B. Feng, Helong Liu, Ying Yang, Hui Shen, Yang Ren, Yinong Liu, Lishan Cui, Bingmin Huang, Shijie Hao
{"title":"在添加剂制造的镍钛铜钴合金中采用精细分层微复合材料赋予低疲劳弹性效应","authors":"B. Feng, Helong Liu, Ying Yang, Hui Shen, Yang Ren, Yinong Liu, Lishan Cui, Bingmin Huang, Shijie Hao","doi":"10.1088/2631-7990/ad35ff","DOIUrl":null,"url":null,"abstract":"\n NiTiCu-based shape memory alloys have been considered as ideal materials for solid-state refrigeration due to their superb cycling stability for elastocaloric effect. However, the embrittlement and deterioration resulted from coarse grains and large-sized secondary phase restrict their application, and it is still challenging since the geometry is required. Here, bulk NiTiCuCo parts with excellent forming quality were fabricated by laser powder bed fusion (LPBF) technique. The as-fabricated alloy exhibits a refined three-phases hierarchical microcomposites structure formed based on the processing mode of LPBF, in which intricate dendritic Ti2Ni-NiTi composites and nano Ti2Cu uniformly embedded inside the NiTi-matrix. This configuration endows far superior elastocaloric stability compared to the cast counterpart. The low fatigue stems from the strong elastic coupling between the interphase with reversible martensite transformation inside the refined microcomposites, revealed by in-situ synchrotron high-energy X-ray diffraction. The fabrication of NiTiCuCo alloy via LPBF fill the bill of complex geometric structures for elastocaloric NiTiCu alloys. The interphase coupling micro-behaviors provide the guide for the design LPBF fabricated shape memory-based composites, enabling their applications with special demands on other functionalities.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endowing Low Fatigue for Elastocaloric Effect by Refined Hierarchical Microcomposite in Additive Manufactured NiTiCuCo Alloy\",\"authors\":\"B. Feng, Helong Liu, Ying Yang, Hui Shen, Yang Ren, Yinong Liu, Lishan Cui, Bingmin Huang, Shijie Hao\",\"doi\":\"10.1088/2631-7990/ad35ff\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n NiTiCu-based shape memory alloys have been considered as ideal materials for solid-state refrigeration due to their superb cycling stability for elastocaloric effect. However, the embrittlement and deterioration resulted from coarse grains and large-sized secondary phase restrict their application, and it is still challenging since the geometry is required. Here, bulk NiTiCuCo parts with excellent forming quality were fabricated by laser powder bed fusion (LPBF) technique. The as-fabricated alloy exhibits a refined three-phases hierarchical microcomposites structure formed based on the processing mode of LPBF, in which intricate dendritic Ti2Ni-NiTi composites and nano Ti2Cu uniformly embedded inside the NiTi-matrix. This configuration endows far superior elastocaloric stability compared to the cast counterpart. The low fatigue stems from the strong elastic coupling between the interphase with reversible martensite transformation inside the refined microcomposites, revealed by in-situ synchrotron high-energy X-ray diffraction. The fabrication of NiTiCuCo alloy via LPBF fill the bill of complex geometric structures for elastocaloric NiTiCu alloys. The interphase coupling micro-behaviors provide the guide for the design LPBF fabricated shape memory-based composites, enabling their applications with special demands on other functionalities.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad35ff\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad35ff","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Endowing Low Fatigue for Elastocaloric Effect by Refined Hierarchical Microcomposite in Additive Manufactured NiTiCuCo Alloy
NiTiCu-based shape memory alloys have been considered as ideal materials for solid-state refrigeration due to their superb cycling stability for elastocaloric effect. However, the embrittlement and deterioration resulted from coarse grains and large-sized secondary phase restrict their application, and it is still challenging since the geometry is required. Here, bulk NiTiCuCo parts with excellent forming quality were fabricated by laser powder bed fusion (LPBF) technique. The as-fabricated alloy exhibits a refined three-phases hierarchical microcomposites structure formed based on the processing mode of LPBF, in which intricate dendritic Ti2Ni-NiTi composites and nano Ti2Cu uniformly embedded inside the NiTi-matrix. This configuration endows far superior elastocaloric stability compared to the cast counterpart. The low fatigue stems from the strong elastic coupling between the interphase with reversible martensite transformation inside the refined microcomposites, revealed by in-situ synchrotron high-energy X-ray diffraction. The fabrication of NiTiCuCo alloy via LPBF fill the bill of complex geometric structures for elastocaloric NiTiCu alloys. The interphase coupling micro-behaviors provide the guide for the design LPBF fabricated shape memory-based composites, enabling their applications with special demands on other functionalities.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.