在添加剂制造的镍钛铜钴合金中采用精细分层微复合材料赋予低疲劳弹性效应

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2024-03-20 DOI:10.1088/2631-7990/ad35ff
B. Feng, Helong Liu, Ying Yang, Hui Shen, Yang Ren, Yinong Liu, Lishan Cui, Bingmin Huang, Shijie Hao
{"title":"在添加剂制造的镍钛铜钴合金中采用精细分层微复合材料赋予低疲劳弹性效应","authors":"B. Feng, Helong Liu, Ying Yang, Hui Shen, Yang Ren, Yinong Liu, Lishan Cui, Bingmin Huang, Shijie Hao","doi":"10.1088/2631-7990/ad35ff","DOIUrl":null,"url":null,"abstract":"\n NiTiCu-based shape memory alloys have been considered as ideal materials for solid-state refrigeration due to their superb cycling stability for elastocaloric effect. However, the embrittlement and deterioration resulted from coarse grains and large-sized secondary phase restrict their application, and it is still challenging since the geometry is required. Here, bulk NiTiCuCo parts with excellent forming quality were fabricated by laser powder bed fusion (LPBF) technique. The as-fabricated alloy exhibits a refined three-phases hierarchical microcomposites structure formed based on the processing mode of LPBF, in which intricate dendritic Ti2Ni-NiTi composites and nano Ti2Cu uniformly embedded inside the NiTi-matrix. This configuration endows far superior elastocaloric stability compared to the cast counterpart. The low fatigue stems from the strong elastic coupling between the interphase with reversible martensite transformation inside the refined microcomposites, revealed by in-situ synchrotron high-energy X-ray diffraction. The fabrication of NiTiCuCo alloy via LPBF fill the bill of complex geometric structures for elastocaloric NiTiCu alloys. The interphase coupling micro-behaviors provide the guide for the design LPBF fabricated shape memory-based composites, enabling their applications with special demands on other functionalities.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endowing Low Fatigue for Elastocaloric Effect by Refined Hierarchical Microcomposite in Additive Manufactured NiTiCuCo Alloy\",\"authors\":\"B. Feng, Helong Liu, Ying Yang, Hui Shen, Yang Ren, Yinong Liu, Lishan Cui, Bingmin Huang, Shijie Hao\",\"doi\":\"10.1088/2631-7990/ad35ff\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n NiTiCu-based shape memory alloys have been considered as ideal materials for solid-state refrigeration due to their superb cycling stability for elastocaloric effect. However, the embrittlement and deterioration resulted from coarse grains and large-sized secondary phase restrict their application, and it is still challenging since the geometry is required. Here, bulk NiTiCuCo parts with excellent forming quality were fabricated by laser powder bed fusion (LPBF) technique. The as-fabricated alloy exhibits a refined three-phases hierarchical microcomposites structure formed based on the processing mode of LPBF, in which intricate dendritic Ti2Ni-NiTi composites and nano Ti2Cu uniformly embedded inside the NiTi-matrix. This configuration endows far superior elastocaloric stability compared to the cast counterpart. The low fatigue stems from the strong elastic coupling between the interphase with reversible martensite transformation inside the refined microcomposites, revealed by in-situ synchrotron high-energy X-ray diffraction. The fabrication of NiTiCuCo alloy via LPBF fill the bill of complex geometric structures for elastocaloric NiTiCu alloys. The interphase coupling micro-behaviors provide the guide for the design LPBF fabricated shape memory-based composites, enabling their applications with special demands on other functionalities.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad35ff\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad35ff","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

镍钛铜基形状记忆合金因其卓越的循环稳定性和弹性热效应而被视为固态制冷的理想材料。然而,粗晶粒和大尺寸次生相导致的脆性和劣化限制了它们的应用,而且由于对几何形状有要求,因此仍具有挑战性。在此,我们采用激光粉末床熔融(LPBF)技术制造了具有优异成型质量的块状镍钛铜钴合金零件。基于 LPBF 的加工模式,制备的合金呈现出精致的三相分层微复合材料结构,其中镍钛基体中均匀嵌入了复杂的树枝状 Ti2Ni-NiTi 复合材料和纳米 Ti2Cu。这种结构的弹性稳定性远远优于铸造结构。原位同步辐射高能 X 射线衍射显示,低疲劳源于精制微复合材料内部相间与可逆马氏体转变之间的强弹性耦合。通过 LPBF 制备镍钛铜钴合金填补了弹性镍钛铜合金复杂几何结构的空白。相间耦合微观行为为设计 LPBF 制备的形状记忆基复合材料提供了指导,使其能够应用于对其他功能有特殊要求的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Endowing Low Fatigue for Elastocaloric Effect by Refined Hierarchical Microcomposite in Additive Manufactured NiTiCuCo Alloy
NiTiCu-based shape memory alloys have been considered as ideal materials for solid-state refrigeration due to their superb cycling stability for elastocaloric effect. However, the embrittlement and deterioration resulted from coarse grains and large-sized secondary phase restrict their application, and it is still challenging since the geometry is required. Here, bulk NiTiCuCo parts with excellent forming quality were fabricated by laser powder bed fusion (LPBF) technique. The as-fabricated alloy exhibits a refined three-phases hierarchical microcomposites structure formed based on the processing mode of LPBF, in which intricate dendritic Ti2Ni-NiTi composites and nano Ti2Cu uniformly embedded inside the NiTi-matrix. This configuration endows far superior elastocaloric stability compared to the cast counterpart. The low fatigue stems from the strong elastic coupling between the interphase with reversible martensite transformation inside the refined microcomposites, revealed by in-situ synchrotron high-energy X-ray diffraction. The fabrication of NiTiCuCo alloy via LPBF fill the bill of complex geometric structures for elastocaloric NiTiCu alloys. The interphase coupling micro-behaviors provide the guide for the design LPBF fabricated shape memory-based composites, enabling their applications with special demands on other functionalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function Holistic and localized preparation methods for triboelectric sensors: principles, applications and perspectives Recent Advances in Fabricating High-Performance Triboelectric Nanogenerators via Modulating Surface Charge Density Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1