强多径传播条件下具有差分探测功能的直接序列扩频水下声学通信系统的性能

IF 0.6 4区 物理与天体物理 Q4 ACOUSTICS Archives of Acoustics Pub Date : 2024-03-19 DOI:10.24425/aoa.2024.148771
Jan H. Schmidt, I. Kochanska, Aleksander M. Schmidt
{"title":"强多径传播条件下具有差分探测功能的直接序列扩频水下声学通信系统的性能","authors":"Jan H. Schmidt, I. Kochanska, Aleksander M. Schmidt","doi":"10.24425/aoa.2024.148771","DOIUrl":null,"url":null,"abstract":"The underwater acoustic communication (UAC) operating in very shallow-water should ensure reliable transmission in conditions of strong multipath propagation, significantly disturbing the received signal. One of the techniques to achieve this goal is the direct sequence spread spectrum (DSSS) technique, which consists in binary phase shift keying (BPSK) according to a pseudo-random spreading sequence. This paper describes the DSSS data transmission tests in the simulation and experimental environment, using different types of pseudo-noise sequences: m-sequences and Kasami codes of the order 6 and 8. The transmitted signals are of different bandwidth and the detection at the receiver side was performed using two detection methods: non-differential and differential. The performed experiments allowed to draw important conclusions for the designing of a physical layer of the shallow-water UAC system. Both, m-sequences and Kasami codes allow to achieve a similar bit error rate, which at best was less than 10 −3. At the same time, the 6th order sequences are not long enough to achieve an acceptable BER under strong multipath conditions. In the case of transmission of wideband signals the differential detection algorithm allows to achieve a significantly better BER (less than 10 −2) than nondifferential one (BER not less than 10 −1). In the case of narrowband signals the simulation tests have shown that the non-differential algorithm gives a better BER, but experimental tests under conditions of strong multipath propagation did not confirm it. The differential algorithm allowed to achieve a BER less than 10 −2 in experimental tests, while the second algorithm allowed to obtain, at best, a BER less than 10 −1. In addition, two indicators have been proposed for a rough assessment which of the detection algorithms under current propagation conditions in the channel will allow to obtain a better BER.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the Direct Sequence Spread Spectrum Underwater Acoustic Communication System with Differential Detection in Strong Multipath Propagation Conditions\",\"authors\":\"Jan H. Schmidt, I. Kochanska, Aleksander M. Schmidt\",\"doi\":\"10.24425/aoa.2024.148771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The underwater acoustic communication (UAC) operating in very shallow-water should ensure reliable transmission in conditions of strong multipath propagation, significantly disturbing the received signal. One of the techniques to achieve this goal is the direct sequence spread spectrum (DSSS) technique, which consists in binary phase shift keying (BPSK) according to a pseudo-random spreading sequence. This paper describes the DSSS data transmission tests in the simulation and experimental environment, using different types of pseudo-noise sequences: m-sequences and Kasami codes of the order 6 and 8. The transmitted signals are of different bandwidth and the detection at the receiver side was performed using two detection methods: non-differential and differential. The performed experiments allowed to draw important conclusions for the designing of a physical layer of the shallow-water UAC system. Both, m-sequences and Kasami codes allow to achieve a similar bit error rate, which at best was less than 10 −3. At the same time, the 6th order sequences are not long enough to achieve an acceptable BER under strong multipath conditions. In the case of transmission of wideband signals the differential detection algorithm allows to achieve a significantly better BER (less than 10 −2) than nondifferential one (BER not less than 10 −1). In the case of narrowband signals the simulation tests have shown that the non-differential algorithm gives a better BER, but experimental tests under conditions of strong multipath propagation did not confirm it. The differential algorithm allowed to achieve a BER less than 10 −2 in experimental tests, while the second algorithm allowed to obtain, at best, a BER less than 10 −1. In addition, two indicators have been proposed for a rough assessment which of the detection algorithms under current propagation conditions in the channel will allow to obtain a better BER.\",\"PeriodicalId\":8149,\"journal\":{\"name\":\"Archives of Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.24425/aoa.2024.148771\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2024.148771","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在极浅水域运行的水下声学通信(UAC)应确保在强烈多径传播条件下的可靠传输,因为多径传播会严重干扰接收信号。实现这一目标的技术之一是直接序列扩频(DSSS)技术,它包括根据伪随机扩频序列进行二进制相移键控(BPSK)。本文介绍了在模拟和实验环境中使用不同类型的伪噪声序列进行的 DSSS 数据传输测试:6 阶和 8 阶的 m 序列和 Kasami 码。传输信号的带宽不同,接收端的检测采用两种检测方法:非差分和差分。所进行的实验为设计浅水 UAC 系统的物理层得出了重要结论。m 序列和 Kasami 编码都能实现类似的误码率,误码率最高不超过 10 -3。 同时,6 阶序列的长度不够,无法在强多径条件下实现可接受的误码率。在传输宽带信号时,差分检测算法的误码率(小于 10 -2)明显优于非差分算法(误码率不小于 10 -1)。对于窄带信号,模拟测试表明非差分算法的误码率更高,但在强多径传播条件下进行的实验测试并未证实这一点。在实验测试中,差分算法的误码率小于 10 -2,而第二种算法的误码率最多小于 10 -1。此外,还提出了两个指标,用于粗略评估在当前信道传播条件下哪种检测算法能获得更好的误码率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of the Direct Sequence Spread Spectrum Underwater Acoustic Communication System with Differential Detection in Strong Multipath Propagation Conditions
The underwater acoustic communication (UAC) operating in very shallow-water should ensure reliable transmission in conditions of strong multipath propagation, significantly disturbing the received signal. One of the techniques to achieve this goal is the direct sequence spread spectrum (DSSS) technique, which consists in binary phase shift keying (BPSK) according to a pseudo-random spreading sequence. This paper describes the DSSS data transmission tests in the simulation and experimental environment, using different types of pseudo-noise sequences: m-sequences and Kasami codes of the order 6 and 8. The transmitted signals are of different bandwidth and the detection at the receiver side was performed using two detection methods: non-differential and differential. The performed experiments allowed to draw important conclusions for the designing of a physical layer of the shallow-water UAC system. Both, m-sequences and Kasami codes allow to achieve a similar bit error rate, which at best was less than 10 −3. At the same time, the 6th order sequences are not long enough to achieve an acceptable BER under strong multipath conditions. In the case of transmission of wideband signals the differential detection algorithm allows to achieve a significantly better BER (less than 10 −2) than nondifferential one (BER not less than 10 −1). In the case of narrowband signals the simulation tests have shown that the non-differential algorithm gives a better BER, but experimental tests under conditions of strong multipath propagation did not confirm it. The differential algorithm allowed to achieve a BER less than 10 −2 in experimental tests, while the second algorithm allowed to obtain, at best, a BER less than 10 −1. In addition, two indicators have been proposed for a rough assessment which of the detection algorithms under current propagation conditions in the channel will allow to obtain a better BER.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Acoustics
Archives of Acoustics 物理-声学
CiteScore
1.80
自引率
11.10%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like: acoustical measurements and instrumentation, acoustics of musics, acousto-optics, architectural, building and environmental acoustics, bioacoustics, electroacoustics, linear and nonlinear acoustics, noise and vibration, physical and chemical effects of sound, physiological acoustics, psychoacoustics, quantum acoustics, speech processing and communication systems, speech production and perception, transducers, ultrasonics, underwater acoustics.
期刊最新文献
Assessing Spatial Audio: A Listener-Centric Case Study on Object-Based and Ambisonic Audio Processing Influence of Ultrasonic Cavitation on Botryococcus Braunii Growth Modelling the Acoustic Properties of Baffles Made of Porous and Fibrous Materials Study on the Impact of Drainage Noise in Residential Bathrooms Based on Finite Element Simulation An Algorithm for Ultrasonic Identification of Ceramic Materials and Virtual Prototype Realization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1