基于声纹识别的在役桥梁伸缩装置故障检测

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Structural Control & Health Monitoring Pub Date : 2024-03-15 DOI:10.1155/2024/1270912
Yiqing Dong, Dalei Wang, Yue Pan, Jin Di, Airong Chen
{"title":"基于声纹识别的在役桥梁伸缩装置故障检测","authors":"Yiqing Dong,&nbsp;Dalei Wang,&nbsp;Yue Pan,&nbsp;Jin Di,&nbsp;Airong Chen","doi":"10.1155/2024/1270912","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Bridge expansion joints (BEJs) in service are susceptible to damage from various factors such as fatigue, impact, and environmental conditions. While visual inspection is the most common approach for inspecting BEJs, it is subjective and labor-intensive. In this paper, we propose a novel methodology for detecting the fault status of BEJs, inspired by voiceprint recognition (VPR) based on audio signals. We establish an Artificial Neural Network to filter nonevent segments from low signal-to-noise ratio signals, achieving an AuC value of 0.981. We design and improve ConFormer VPR models with a multifeature aggregation strategy and cascade them to realize fault detection of BEJs. For three successive tasks in classifying environment sound types, vehicle impact types, and faults, the ConFormer VPR models achieve AuC values of 0.975, 0.925, and 0.886, respectively, demonstrating the feasibility of our methods for unmanned inspection of BEJs. In future research, the introduction of multiple types of damage and the implementation of benchmarking tests are planned to further enhance the capabilities of the system.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1270912","citationCount":"0","resultStr":"{\"title\":\"Fault Detection of In-Service Bridge Expansion Joint Based on Voiceprint Recognition\",\"authors\":\"Yiqing Dong,&nbsp;Dalei Wang,&nbsp;Yue Pan,&nbsp;Jin Di,&nbsp;Airong Chen\",\"doi\":\"10.1155/2024/1270912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Bridge expansion joints (BEJs) in service are susceptible to damage from various factors such as fatigue, impact, and environmental conditions. While visual inspection is the most common approach for inspecting BEJs, it is subjective and labor-intensive. In this paper, we propose a novel methodology for detecting the fault status of BEJs, inspired by voiceprint recognition (VPR) based on audio signals. We establish an Artificial Neural Network to filter nonevent segments from low signal-to-noise ratio signals, achieving an AuC value of 0.981. We design and improve ConFormer VPR models with a multifeature aggregation strategy and cascade them to realize fault detection of BEJs. For three successive tasks in classifying environment sound types, vehicle impact types, and faults, the ConFormer VPR models achieve AuC values of 0.975, 0.925, and 0.886, respectively, demonstrating the feasibility of our methods for unmanned inspection of BEJs. In future research, the introduction of multiple types of damage and the implementation of benchmarking tests are planned to further enhance the capabilities of the system.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1270912\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/1270912\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1270912","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

桥梁伸缩缝(BEJ)在使用过程中容易受到疲劳、冲击和环境条件等各种因素的影响而损坏。虽然目测是检测 BEJ 最常用的方法,但这种方法既主观又耗费人力。本文受基于音频信号的声纹识别(VPR)的启发,提出了一种检测 BEJ 故障状态的新方法。我们建立了一个人工神经网络来过滤低信噪比信号中的非事件片段,实现了 0.981 的 AuC 值。我们利用多特征聚合策略设计并改进了 ConFormer VPR 模型,并将其级联以实现 BEJ 的故障检测。在对环境声音类型、车辆撞击类型和故障进行分类的三个连续任务中,ConFormer VPR 模型的 AuC 值分别为 0.975、0.925 和 0.886,证明了我们的方法在 BEJ 无人检测中的可行性。在未来的研究中,我们计划引入多种类型的损坏并实施基准测试,以进一步提高系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Detection of In-Service Bridge Expansion Joint Based on Voiceprint Recognition

Bridge expansion joints (BEJs) in service are susceptible to damage from various factors such as fatigue, impact, and environmental conditions. While visual inspection is the most common approach for inspecting BEJs, it is subjective and labor-intensive. In this paper, we propose a novel methodology for detecting the fault status of BEJs, inspired by voiceprint recognition (VPR) based on audio signals. We establish an Artificial Neural Network to filter nonevent segments from low signal-to-noise ratio signals, achieving an AuC value of 0.981. We design and improve ConFormer VPR models with a multifeature aggregation strategy and cascade them to realize fault detection of BEJs. For three successive tasks in classifying environment sound types, vehicle impact types, and faults, the ConFormer VPR models achieve AuC values of 0.975, 0.925, and 0.886, respectively, demonstrating the feasibility of our methods for unmanned inspection of BEJs. In future research, the introduction of multiple types of damage and the implementation of benchmarking tests are planned to further enhance the capabilities of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
期刊最新文献
Deflection Prediction of a Rail-Cum-Road Suspension Bridge Under Multiple Operational Loads With Improved GPR and FSF Evaluation Method for Bearing Capacity of Fine-Grained Soil Subgrade Based on Multiple Moduli 3D Laser Scanning-Based Tension Assessment for Bridge Cables Considering Point Cloud Density Damage Identification in Large-Scale Bridge Girders Using Output-Only Modal Flexibility–Based Deflections and Span-Similar Virtual Beam Models A Multiple-Point Deformation Monitoring Model for Ultrahigh Arch Dams Using Temperature Lag and Optimized Gaussian Process Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1