R. A. Vandermeer, X. C. Lei, E. F. F. Knipschildt-Okkels, F. Lin, R. E. Sanders, D. Juul Jensen
{"title":"铝合金 AA5182 和 AA5657 中原生再结晶的高级微观结构路径建模","authors":"R. A. Vandermeer, X. C. Lei, E. F. F. Knipschildt-Okkels, F. Lin, R. E. Sanders, D. Juul Jensen","doi":"10.1002/metm.15","DOIUrl":null,"url":null,"abstract":"<p>When analyzing recrystallization kinetics data, it is extremely important to use a model, which has appropriate assumptions for nucleation and growth, including spatial distribution of nuclei, nucleation rate, growth rate, and directionality. In the present work, we reveal how advanced microstructural path modeling (MPM) can successfully fit kinetics data for the complex recrystallization of two different industrial aluminum alloys. Simpler models have failed to fit the data over the entire recrystallization period. The new model allows for spatially clustered nucleation and for different growth rates in different sample directions, whereby the grains evolve with an aspect ratio different from 1. Based on the MPM analysis, the specific nucleation and growth parameters as well as the recrystallized grain sizes are deduced, and the recrystallization characteristics of the two alloys are compared. The work demonstrates the power of quantitative metallography and the wealth of recrystallization information that may be obtained from MPM modeling of such stereological data.</p>","PeriodicalId":100919,"journal":{"name":"MetalMat","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/metm.15","citationCount":"0","resultStr":"{\"title\":\"Advanced microstructural path modeling of primary recrystallization in aluminum alloys AA5182 and AA5657\",\"authors\":\"R. A. Vandermeer, X. C. Lei, E. F. F. Knipschildt-Okkels, F. Lin, R. E. Sanders, D. Juul Jensen\",\"doi\":\"10.1002/metm.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When analyzing recrystallization kinetics data, it is extremely important to use a model, which has appropriate assumptions for nucleation and growth, including spatial distribution of nuclei, nucleation rate, growth rate, and directionality. In the present work, we reveal how advanced microstructural path modeling (MPM) can successfully fit kinetics data for the complex recrystallization of two different industrial aluminum alloys. Simpler models have failed to fit the data over the entire recrystallization period. The new model allows for spatially clustered nucleation and for different growth rates in different sample directions, whereby the grains evolve with an aspect ratio different from 1. Based on the MPM analysis, the specific nucleation and growth parameters as well as the recrystallized grain sizes are deduced, and the recrystallization characteristics of the two alloys are compared. The work demonstrates the power of quantitative metallography and the wealth of recrystallization information that may be obtained from MPM modeling of such stereological data.</p>\",\"PeriodicalId\":100919,\"journal\":{\"name\":\"MetalMat\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/metm.15\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MetalMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/metm.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MetalMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/metm.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced microstructural path modeling of primary recrystallization in aluminum alloys AA5182 and AA5657
When analyzing recrystallization kinetics data, it is extremely important to use a model, which has appropriate assumptions for nucleation and growth, including spatial distribution of nuclei, nucleation rate, growth rate, and directionality. In the present work, we reveal how advanced microstructural path modeling (MPM) can successfully fit kinetics data for the complex recrystallization of two different industrial aluminum alloys. Simpler models have failed to fit the data over the entire recrystallization period. The new model allows for spatially clustered nucleation and for different growth rates in different sample directions, whereby the grains evolve with an aspect ratio different from 1. Based on the MPM analysis, the specific nucleation and growth parameters as well as the recrystallized grain sizes are deduced, and the recrystallization characteristics of the two alloys are compared. The work demonstrates the power of quantitative metallography and the wealth of recrystallization information that may be obtained from MPM modeling of such stereological data.