利用自适应局部预拟合能量的水平集方法,用于强度不均匀的图像分割

Pengqiang Ge, Yiyang Chen, Guina Wang, G. Weng, Hongtian Chen
{"title":"利用自适应局部预拟合能量的水平集方法,用于强度不均匀的图像分割","authors":"Pengqiang Ge, Yiyang Chen, Guina Wang, G. Weng, Hongtian Chen","doi":"10.3233/jifs-237629","DOIUrl":null,"url":null,"abstract":"Active contour model (ACM) is considered as one of the most frequently employed models in image segmentation due to its effectiveness and efficiency. However, the segmentation results of images with intensity non-uniformity processed by the majority of existing ACMs are possibly inaccurate or even wrong in the forms of edge leakage, long convergence time and poor robustness. In addition, they usually become unstable with the existence of different initial contours and unevenly distributed intensity. To better solve these problems and improve segmentation results, this paper puts forward an ACM approach using adaptive local pre-fitting energy (ALPF) for image segmentation with intensity non-uniformity. Firstly, the pre-fitting functions generate fitted images inside and outside contour line ahead of iteration, which significantly reduces convergence time of level set function. Next, an adaptive regularization function is designed to normalize the energy range of data-driven term, which improves robustness and stability to different initial contours and intensity non-uniformity. Lastly, an improved length constraint term is utilized to continuously smooth and shorten zero level set, which reduces the chance of edge leakage and filters out irrelevant background noise. In contrast with newly constructed ACMs, ALPF model not only improves segmentation accuracy (Intersection over union(IOU)), but also significantly reduces computation cost (CPU operating time T), while handling three types of images. Experiments also indicate that it is not only more robust to different initial contours as well as different noise, but also more competent to process images with intensity non-uniformity.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A level set approach using adaptive local pre-fitting energy for image segmentation with intensity non-uniformity\",\"authors\":\"Pengqiang Ge, Yiyang Chen, Guina Wang, G. Weng, Hongtian Chen\",\"doi\":\"10.3233/jifs-237629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active contour model (ACM) is considered as one of the most frequently employed models in image segmentation due to its effectiveness and efficiency. However, the segmentation results of images with intensity non-uniformity processed by the majority of existing ACMs are possibly inaccurate or even wrong in the forms of edge leakage, long convergence time and poor robustness. In addition, they usually become unstable with the existence of different initial contours and unevenly distributed intensity. To better solve these problems and improve segmentation results, this paper puts forward an ACM approach using adaptive local pre-fitting energy (ALPF) for image segmentation with intensity non-uniformity. Firstly, the pre-fitting functions generate fitted images inside and outside contour line ahead of iteration, which significantly reduces convergence time of level set function. Next, an adaptive regularization function is designed to normalize the energy range of data-driven term, which improves robustness and stability to different initial contours and intensity non-uniformity. Lastly, an improved length constraint term is utilized to continuously smooth and shorten zero level set, which reduces the chance of edge leakage and filters out irrelevant background noise. In contrast with newly constructed ACMs, ALPF model not only improves segmentation accuracy (Intersection over union(IOU)), but also significantly reduces computation cost (CPU operating time T), while handling three types of images. Experiments also indicate that it is not only more robust to different initial contours as well as different noise, but also more competent to process images with intensity non-uniformity.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-237629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-237629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主动轮廓模型(ACM)因其有效性和高效性被认为是图像分割中最常用的模型之一。然而,大多数现有的主动等高线模型在处理强度不均匀的图像时,其分割结果可能不准确甚至是错误的,表现为边缘泄漏、收敛时间长和鲁棒性差。此外,由于存在不同的初始轮廓和不均匀的强度分布,它们通常会变得不稳定。为了更好地解决这些问题,提高分割效果,本文提出了一种利用自适应局部预拟合能量(ALPF)进行强度不均匀图像分割的 ACM 方法。首先,预拟合函数会在迭代之前生成轮廓线内外的拟合图像,这大大缩短了水平集函数的收敛时间。其次,设计了一个自适应正则化函数来规范数据驱动项的能量范围,从而提高了对不同初始轮廓和强度不均匀性的鲁棒性和稳定性。最后,利用改进的长度约束项来持续平滑和缩短零水平集,从而降低边缘泄漏的几率,并过滤掉无关的背景噪声。与新构建的 ACM 相比,ALPF 模型不仅提高了分割精度(Intersection over union(IOU)),还显著降低了计算成本(CPU 运行时间 T),同时还能处理三种类型的图像。实验还表明,它不仅对不同的初始轮廓和不同的噪声具有更强的鲁棒性,而且在处理强度不均匀的图像时也更加得心应手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A level set approach using adaptive local pre-fitting energy for image segmentation with intensity non-uniformity
Active contour model (ACM) is considered as one of the most frequently employed models in image segmentation due to its effectiveness and efficiency. However, the segmentation results of images with intensity non-uniformity processed by the majority of existing ACMs are possibly inaccurate or even wrong in the forms of edge leakage, long convergence time and poor robustness. In addition, they usually become unstable with the existence of different initial contours and unevenly distributed intensity. To better solve these problems and improve segmentation results, this paper puts forward an ACM approach using adaptive local pre-fitting energy (ALPF) for image segmentation with intensity non-uniformity. Firstly, the pre-fitting functions generate fitted images inside and outside contour line ahead of iteration, which significantly reduces convergence time of level set function. Next, an adaptive regularization function is designed to normalize the energy range of data-driven term, which improves robustness and stability to different initial contours and intensity non-uniformity. Lastly, an improved length constraint term is utilized to continuously smooth and shorten zero level set, which reduces the chance of edge leakage and filters out irrelevant background noise. In contrast with newly constructed ACMs, ALPF model not only improves segmentation accuracy (Intersection over union(IOU)), but also significantly reduces computation cost (CPU operating time T), while handling three types of images. Experiments also indicate that it is not only more robust to different initial contours as well as different noise, but also more competent to process images with intensity non-uniformity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-driven control of a five-bar parallel robot with compliant joints CycleGAN generated pneumonia chest x-ray images: Evaluation with vision transformer Robust image registration for analysis of multisource eye fundus images An efficient two-heuristic algorithm for the student-project allocation with preferences over projects Dynamic task scheduling in edge cloud systems using deep recurrent neural networks and environment learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1