JayBot - 通过基于法律硕士的聊天机器人为大学生和招生工作提供帮助

Julius Odede, Ingo Frommholz
{"title":"JayBot - 通过基于法律硕士的聊天机器人为大学生和招生工作提供帮助","authors":"Julius Odede, Ingo Frommholz","doi":"10.1145/3627508.3638293","DOIUrl":null,"url":null,"abstract":"This demo paper presents JayBot, an LLM-based chatbot system aimed at enhancing the user experience of prospective and current students, faculty, and staff at a UK university. The objective of JayBot is to provide information to users on general enquiries regarding course modules, duration, fees, entry requirements, lecturers, internship, career paths, course employability and other related aspects. Leveraging the use cases of generative artificial intelligence (AI), the chatbot application was built using OpenAI’s advanced large language model (GPT-3.5 turbo); to tackle issues such as hallucination as well as focus and timeliness of results, an embedding transformer model has been combined with a vector database and vector search. Prompt engineering techniques were employed to enhance the chatbot’s response abilities. Preliminary user studies indicate JayBot’s effectiveness and efficiency. The demo will showcase JayBot in a university admission use case and discuss further application scenarios.","PeriodicalId":220434,"journal":{"name":"Conference on Human Information Interaction and Retrieval","volume":"14 5","pages":"391-395"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JayBot - Aiding University Students and Admission with an LLM-based Chatbot\",\"authors\":\"Julius Odede, Ingo Frommholz\",\"doi\":\"10.1145/3627508.3638293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo paper presents JayBot, an LLM-based chatbot system aimed at enhancing the user experience of prospective and current students, faculty, and staff at a UK university. The objective of JayBot is to provide information to users on general enquiries regarding course modules, duration, fees, entry requirements, lecturers, internship, career paths, course employability and other related aspects. Leveraging the use cases of generative artificial intelligence (AI), the chatbot application was built using OpenAI’s advanced large language model (GPT-3.5 turbo); to tackle issues such as hallucination as well as focus and timeliness of results, an embedding transformer model has been combined with a vector database and vector search. Prompt engineering techniques were employed to enhance the chatbot’s response abilities. Preliminary user studies indicate JayBot’s effectiveness and efficiency. The demo will showcase JayBot in a university admission use case and discuss further application scenarios.\",\"PeriodicalId\":220434,\"journal\":{\"name\":\"Conference on Human Information Interaction and Retrieval\",\"volume\":\"14 5\",\"pages\":\"391-395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Human Information Interaction and Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627508.3638293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Human Information Interaction and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627508.3638293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本演示文稿介绍了 JayBot,这是一个基于法学硕士的聊天机器人系统,旨在提升英国一所大学的潜在和在校学生、教职员工的用户体验。JayBot 的目标是为用户提供有关课程模块、学制、学费、入学要求、讲师、实习、就业途径、课程就业能力和其他相关方面的一般查询信息。利用生成式人工智能(AI)的使用案例,聊天机器人应用采用了 OpenAI 先进的大型语言模型(GPT-3.5 turbo);为了解决幻觉以及结果的针对性和及时性等问题,嵌入式转换器模型与向量数据库和向量搜索相结合。此外,还采用了即时工程技术来提高聊天机器人的响应能力。初步的用户研究表明,JayBot 非常有效和高效。演示将展示 JayBot 在大学招生中的使用案例,并讨论进一步的应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JayBot - Aiding University Students and Admission with an LLM-based Chatbot
This demo paper presents JayBot, an LLM-based chatbot system aimed at enhancing the user experience of prospective and current students, faculty, and staff at a UK university. The objective of JayBot is to provide information to users on general enquiries regarding course modules, duration, fees, entry requirements, lecturers, internship, career paths, course employability and other related aspects. Leveraging the use cases of generative artificial intelligence (AI), the chatbot application was built using OpenAI’s advanced large language model (GPT-3.5 turbo); to tackle issues such as hallucination as well as focus and timeliness of results, an embedding transformer model has been combined with a vector database and vector search. Prompt engineering techniques were employed to enhance the chatbot’s response abilities. Preliminary user studies indicate JayBot’s effectiveness and efficiency. The demo will showcase JayBot in a university admission use case and discuss further application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Activity-Driven Music Listening with PACE Why Do Customers Return Products? Using Customer Reviews to Predict Product Return Behaviors Decoding Distress: How Search Engine Data Reveals Socioeconomic Disparities in Mental Health The Dark Matter of Serendipity in Recommender Systems A User Study on the Acceptance of Native Advertising in Generative IR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1