{"title":"制备用于在水环境中高效吸附刚果红的金属有机框架 MIL-88B(Fe)-NH2","authors":"Hoang Thi Linh Giang, Dang Thi Minh Hue, Tran Thi Luyen, Tran Vinh Hoang, Huynh Dang Chinh","doi":"10.62239/jca.2023.063","DOIUrl":null,"url":null,"abstract":"MIL-88B(Fe)-NH2 material was prepared by a simple solvothermal method. Various techniques were performed to investigate material characteristics including X-ray diffraction (XRD), scanning electron spectroscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. The result indicates that the particle shape is a bipyramidal hexagonal prism having a porous surface, and the BET surface area is 13.43 m2/g. Adsorption of congo red (CR) onto MIL-88B(Fe)-NH2 was studied as well. The adsorption equilibrium of the material is reached rapidly after 10 minutes with excellent adsorption efficiency (98.02%). Adsorption kinetic conforms to Langmuir isothermal adsorption model with the high maximum capacity of 333.33 mg/g.","PeriodicalId":23507,"journal":{"name":"Vietnam Journal of Catalysis and Adsorption","volume":"189 S517","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Metal - Organic Framework MIL-88B(Fe)-NH2 for Efficient Adsorption of Congo Red in Aqueous Environment\",\"authors\":\"Hoang Thi Linh Giang, Dang Thi Minh Hue, Tran Thi Luyen, Tran Vinh Hoang, Huynh Dang Chinh\",\"doi\":\"10.62239/jca.2023.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MIL-88B(Fe)-NH2 material was prepared by a simple solvothermal method. Various techniques were performed to investigate material characteristics including X-ray diffraction (XRD), scanning electron spectroscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. The result indicates that the particle shape is a bipyramidal hexagonal prism having a porous surface, and the BET surface area is 13.43 m2/g. Adsorption of congo red (CR) onto MIL-88B(Fe)-NH2 was studied as well. The adsorption equilibrium of the material is reached rapidly after 10 minutes with excellent adsorption efficiency (98.02%). Adsorption kinetic conforms to Langmuir isothermal adsorption model with the high maximum capacity of 333.33 mg/g.\",\"PeriodicalId\":23507,\"journal\":{\"name\":\"Vietnam Journal of Catalysis and Adsorption\",\"volume\":\"189 S517\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Catalysis and Adsorption\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62239/jca.2023.063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Catalysis and Adsorption","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62239/jca.2023.063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of Metal - Organic Framework MIL-88B(Fe)-NH2 for Efficient Adsorption of Congo Red in Aqueous Environment
MIL-88B(Fe)-NH2 material was prepared by a simple solvothermal method. Various techniques were performed to investigate material characteristics including X-ray diffraction (XRD), scanning electron spectroscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area. The result indicates that the particle shape is a bipyramidal hexagonal prism having a porous surface, and the BET surface area is 13.43 m2/g. Adsorption of congo red (CR) onto MIL-88B(Fe)-NH2 was studied as well. The adsorption equilibrium of the material is reached rapidly after 10 minutes with excellent adsorption efficiency (98.02%). Adsorption kinetic conforms to Langmuir isothermal adsorption model with the high maximum capacity of 333.33 mg/g.