基于实际交通负荷和气候条件的公交车道设计

Giulia Del Serrone, Paola Di Mascio, G. Loprencipe, Lorenzo Vita, Laura Moretti
{"title":"基于实际交通负荷和气候条件的公交车道设计","authors":"Giulia Del Serrone, Paola Di Mascio, G. Loprencipe, Lorenzo Vita, Laura Moretti","doi":"10.3390/infrastructures9030050","DOIUrl":null,"url":null,"abstract":"Bus lanes play a crucial role in urban areas as their primary objective is to increase public transport efficiency and help traffic and public transit systems flow more smoothly. This study starts with traffic and climate monitoring to verify asphalt bus lanes in Rome, Italy, according to the Italian Pavement Design Catalogue published in 1995. KENLAYER software calculated the stress-strain conditions under real traffic loads (i.e., hourly passages of urban buses, considering their axle load and seat occupancy rate), typical subgrade bearing capacity (i.e., resilient modulus equal to 90 MPa), current climate conditions, and road material properties. Then, the Mechanistic-Empirical Pavement Design Guide (MEPDG) was used to verify the response of the pavement structure. The fatigue verification of bound materials resulted in damage values much lower than 1 at the end of the 20-year service life (i.e., 0.12 with the Asphalt Institute and 0.31 with the Marchionna law, respectively) and highlights that the Italian catalogue’s sheets are overdesigned. On the other hand, the rutting verification according to MEPDG is not satisfied after an 11-year service life (i.e., the total rutting is equal to 1.50 cm), forcing frequent and expensive maintenance of wearing and binder courses. Therefore, the results confirm the validity of the Italian catalogue for fatigue service life and suggest the need for high-performance asphalt to prevent early rutting due to bus traffic increasing by load and frequency in previous decades.","PeriodicalId":502683,"journal":{"name":"Infrastructures","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bus Lane Design Based on Actual Traffic Loads and Climate Conditions\",\"authors\":\"Giulia Del Serrone, Paola Di Mascio, G. Loprencipe, Lorenzo Vita, Laura Moretti\",\"doi\":\"10.3390/infrastructures9030050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bus lanes play a crucial role in urban areas as their primary objective is to increase public transport efficiency and help traffic and public transit systems flow more smoothly. This study starts with traffic and climate monitoring to verify asphalt bus lanes in Rome, Italy, according to the Italian Pavement Design Catalogue published in 1995. KENLAYER software calculated the stress-strain conditions under real traffic loads (i.e., hourly passages of urban buses, considering their axle load and seat occupancy rate), typical subgrade bearing capacity (i.e., resilient modulus equal to 90 MPa), current climate conditions, and road material properties. Then, the Mechanistic-Empirical Pavement Design Guide (MEPDG) was used to verify the response of the pavement structure. The fatigue verification of bound materials resulted in damage values much lower than 1 at the end of the 20-year service life (i.e., 0.12 with the Asphalt Institute and 0.31 with the Marchionna law, respectively) and highlights that the Italian catalogue’s sheets are overdesigned. On the other hand, the rutting verification according to MEPDG is not satisfied after an 11-year service life (i.e., the total rutting is equal to 1.50 cm), forcing frequent and expensive maintenance of wearing and binder courses. Therefore, the results confirm the validity of the Italian catalogue for fatigue service life and suggest the need for high-performance asphalt to prevent early rutting due to bus traffic increasing by load and frequency in previous decades.\",\"PeriodicalId\":502683,\"journal\":{\"name\":\"Infrastructures\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrastructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/infrastructures9030050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures9030050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公交专用道在城市地区发挥着至关重要的作用,因为其主要目的是提高公共交通效率,帮助交通和公共交通系统更加顺畅。本研究根据 1995 年出版的《意大利路面设计目录》,从交通和气候监测入手,对意大利罗马的沥青公交专用道进行了验证。KENLAYER 软件计算了实际交通负荷(即城市公交车每小时的通过量,考虑其轴载和座位占用率)、典型路基承载能力(即弹性模量等于 90 兆帕)、当前气候条件和路面材料属性下的应力应变条件。然后,使用《机械-经验路面设计指南》(MEPDG)来验证路面结构的响应。对绑定材料进行疲劳验证的结果是,在 20 年使用寿命结束时,损坏值远小于 1(即沥青协会的损坏值为 0.12,Marchionna 法的损坏值为 0.31),这突出表明意大利目录中的路面设计过度。另一方面,根据 MEPDG 的车辙验证,在 11 年的使用年限后,车辙验证仍未达到要求(即总车辙等于 1.50 厘米),这就迫使对磨耗层和粘结层进行频繁而昂贵的维护。因此,这些结果证实了意大利疲劳使用寿命目录的有效性,并表明需要采用高性能沥青来防止因过去几十年中公交车载荷和频率增加而导致的早期车辙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bus Lane Design Based on Actual Traffic Loads and Climate Conditions
Bus lanes play a crucial role in urban areas as their primary objective is to increase public transport efficiency and help traffic and public transit systems flow more smoothly. This study starts with traffic and climate monitoring to verify asphalt bus lanes in Rome, Italy, according to the Italian Pavement Design Catalogue published in 1995. KENLAYER software calculated the stress-strain conditions under real traffic loads (i.e., hourly passages of urban buses, considering their axle load and seat occupancy rate), typical subgrade bearing capacity (i.e., resilient modulus equal to 90 MPa), current climate conditions, and road material properties. Then, the Mechanistic-Empirical Pavement Design Guide (MEPDG) was used to verify the response of the pavement structure. The fatigue verification of bound materials resulted in damage values much lower than 1 at the end of the 20-year service life (i.e., 0.12 with the Asphalt Institute and 0.31 with the Marchionna law, respectively) and highlights that the Italian catalogue’s sheets are overdesigned. On the other hand, the rutting verification according to MEPDG is not satisfied after an 11-year service life (i.e., the total rutting is equal to 1.50 cm), forcing frequent and expensive maintenance of wearing and binder courses. Therefore, the results confirm the validity of the Italian catalogue for fatigue service life and suggest the need for high-performance asphalt to prevent early rutting due to bus traffic increasing by load and frequency in previous decades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements Traffic Flow Optimization at Toll Plaza Using Proactive Deep Learning Strategies Track Deterioration Model—State of the Art and Research Potentials Microstructural and Residual Properties of Self-Compacting Concrete Containing Waste Copper Slag as Fine Aggregate Exposed to Ambient and Elevated Temperatures Building Information Modeling/Building Energy Simulation Integration Based on Quantitative and Interpretative Interoperability Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1