利用模拟卫星图像将深度学习应用于二氧化碳发电厂排放量化

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscientific Model Development Pub Date : 2024-03-05 DOI:10.5194/gmd-17-1995-2024
Joffrey Dumont Le Brazidec, P. Vanderbecken, A. Farchi, G. Broquet, G. Kuhlmann, M. Bocquet
{"title":"利用模拟卫星图像将深度学习应用于二氧化碳发电厂排放量化","authors":"Joffrey Dumont Le Brazidec, P. Vanderbecken, A. Farchi, G. Broquet, G. Kuhlmann, M. Bocquet","doi":"10.5194/gmd-17-1995-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The quantification of emissions of greenhouse gases and air pollutants through the inversion of plumes in satellite images remains a complex problem that current methods can only assess with significant uncertainties. The anticipated launch of the CO2M (Copernicus Anthropogenic Carbon Dioxide Monitoring) satellite constellation in 2026 is expected to provide high-resolution images of CO2 (carbon dioxide) column-averaged mole fractions (XCO2), opening up new possibilities. However, the inversion of future CO2 plumes from CO2M will encounter various obstacles. A challenge is the low CO2 plume signal-to-noise ratio due to the variability in the background and instrumental errors in satellite measurements. Moreover, uncertainties in the transport and dispersion processes further complicate the inversion task. To address these challenges, deep learning techniques, such as neural networks, offer promising solutions for retrieving emissions from plumes in XCO2 images. Deep learning models can be trained to identify emissions from plume dynamics simulated using a transport model. It then becomes possible to extract relevant information from new plumes and predict their emissions. In this paper, we develop a strategy employing convolutional neural networks (CNNs) to estimate the emission fluxes from a plume in a pseudo-XCO2 image. Our dataset used to train and test such methods includes pseudo-images based on simulations of hourly XCO2, NO2 (nitrogen dioxide), and wind fields near various power plants in eastern Germany, tracing plumes from anthropogenic and biogenic sources. CNN models are trained to predict emissions from three power plants that exhibit diverse characteristics. The power plants used to assess the deep learning model's performance are not used to train the model. We find that the CNN model outperforms state-of-the-art plume inversion approaches, achieving highly accurate results with an absolute error about half of that of the cross-sectional flux method and an absolute relative error of ∼ 20 % when only the XCO2 and wind fields are used as inputs. Furthermore, we show that our estimations are only slightly affected by the absence of NO2 fields or a detection mechanism as additional information. Finally, interpretability techniques applied to our models confirm that the CNN automatically learns to identify the XCO2 plume and to assess emissions from the plume concentrations. These promising results suggest a high potential of CNNs in estimating local CO2 emissions from satellite images.\n","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning applied to CO2 power plant emissions quantification using simulated satellite images\",\"authors\":\"Joffrey Dumont Le Brazidec, P. Vanderbecken, A. Farchi, G. Broquet, G. Kuhlmann, M. Bocquet\",\"doi\":\"10.5194/gmd-17-1995-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The quantification of emissions of greenhouse gases and air pollutants through the inversion of plumes in satellite images remains a complex problem that current methods can only assess with significant uncertainties. The anticipated launch of the CO2M (Copernicus Anthropogenic Carbon Dioxide Monitoring) satellite constellation in 2026 is expected to provide high-resolution images of CO2 (carbon dioxide) column-averaged mole fractions (XCO2), opening up new possibilities. However, the inversion of future CO2 plumes from CO2M will encounter various obstacles. A challenge is the low CO2 plume signal-to-noise ratio due to the variability in the background and instrumental errors in satellite measurements. Moreover, uncertainties in the transport and dispersion processes further complicate the inversion task. To address these challenges, deep learning techniques, such as neural networks, offer promising solutions for retrieving emissions from plumes in XCO2 images. Deep learning models can be trained to identify emissions from plume dynamics simulated using a transport model. It then becomes possible to extract relevant information from new plumes and predict their emissions. In this paper, we develop a strategy employing convolutional neural networks (CNNs) to estimate the emission fluxes from a plume in a pseudo-XCO2 image. Our dataset used to train and test such methods includes pseudo-images based on simulations of hourly XCO2, NO2 (nitrogen dioxide), and wind fields near various power plants in eastern Germany, tracing plumes from anthropogenic and biogenic sources. CNN models are trained to predict emissions from three power plants that exhibit diverse characteristics. The power plants used to assess the deep learning model's performance are not used to train the model. We find that the CNN model outperforms state-of-the-art plume inversion approaches, achieving highly accurate results with an absolute error about half of that of the cross-sectional flux method and an absolute relative error of ∼ 20 % when only the XCO2 and wind fields are used as inputs. Furthermore, we show that our estimations are only slightly affected by the absence of NO2 fields or a detection mechanism as additional information. Finally, interpretability techniques applied to our models confirm that the CNN automatically learns to identify the XCO2 plume and to assess emissions from the plume concentrations. These promising results suggest a high potential of CNNs in estimating local CO2 emissions from satellite images.\\n\",\"PeriodicalId\":12799,\"journal\":{\"name\":\"Geoscientific Model Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Model Development\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/gmd-17-1995-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gmd-17-1995-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要通过反演卫星图像中的羽流来量化温室气体和空气污染物的排放仍然是一个复杂的问题,目前的方法只能在具有很大不确定性的情况下进行评估。预计将于 2026 年发射的 CO2M(哥白尼人为二氧化碳监测)卫星星座有望提供二氧化碳柱平均摩尔分数(XCO2)的高分辨率图像,从而开辟新的可能性。然而,从 CO2M 反演未来的二氧化碳羽流将会遇到各种障碍。一个挑战是由于卫星测量的背景变化和仪器误差导致二氧化碳羽流信噪比较低。此外,传输和扩散过程中的不确定性也使反演任务更加复杂。为了应对这些挑战,神经网络等深度学习技术为检索 XCO2 图像中的羽流排放提供了前景广阔的解决方案。可以对深度学习模型进行训练,以识别使用传输模型模拟的羽流动态排放。这样就可以从新的羽流中提取相关信息并预测其排放量。在本文中,我们开发了一种采用卷积神经网络(CNN)的策略,以估计伪 XCO2 图像中羽流的排放通量。我们用于训练和测试此类方法的数据集包括基于德国东部各发电厂附近每小时 XCO2、NO2(二氧化氮)和风场模拟的伪图像,追踪人为和生物源的羽流。CNN 模型经过训练,可预测三个发电厂的排放量,这些发电厂具有不同的特点。用于评估深度学习模型性能的发电厂不用于训练模型。我们发现,CNN 模型的性能优于最先进的羽流反演方法,其结果非常准确,绝对误差约为横截面通量方法的一半,而当仅使用 XCO2 和风场作为输入时,绝对相对误差为 ∼ 20%。此外,我们还表明,如果没有二氧化氮场或探测机制作为附加信息,我们的估算结果只会受到轻微影响。最后,应用于我们模型的可解释性技术证实,CNN 能够自动学习识别 XCO2 烟羽并评估烟羽浓度的排放量。这些令人鼓舞的结果表明,CNN 在从卫星图像估算当地二氧化碳排放量方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning applied to CO2 power plant emissions quantification using simulated satellite images
Abstract. The quantification of emissions of greenhouse gases and air pollutants through the inversion of plumes in satellite images remains a complex problem that current methods can only assess with significant uncertainties. The anticipated launch of the CO2M (Copernicus Anthropogenic Carbon Dioxide Monitoring) satellite constellation in 2026 is expected to provide high-resolution images of CO2 (carbon dioxide) column-averaged mole fractions (XCO2), opening up new possibilities. However, the inversion of future CO2 plumes from CO2M will encounter various obstacles. A challenge is the low CO2 plume signal-to-noise ratio due to the variability in the background and instrumental errors in satellite measurements. Moreover, uncertainties in the transport and dispersion processes further complicate the inversion task. To address these challenges, deep learning techniques, such as neural networks, offer promising solutions for retrieving emissions from plumes in XCO2 images. Deep learning models can be trained to identify emissions from plume dynamics simulated using a transport model. It then becomes possible to extract relevant information from new plumes and predict their emissions. In this paper, we develop a strategy employing convolutional neural networks (CNNs) to estimate the emission fluxes from a plume in a pseudo-XCO2 image. Our dataset used to train and test such methods includes pseudo-images based on simulations of hourly XCO2, NO2 (nitrogen dioxide), and wind fields near various power plants in eastern Germany, tracing plumes from anthropogenic and biogenic sources. CNN models are trained to predict emissions from three power plants that exhibit diverse characteristics. The power plants used to assess the deep learning model's performance are not used to train the model. We find that the CNN model outperforms state-of-the-art plume inversion approaches, achieving highly accurate results with an absolute error about half of that of the cross-sectional flux method and an absolute relative error of ∼ 20 % when only the XCO2 and wind fields are used as inputs. Furthermore, we show that our estimations are only slightly affected by the absence of NO2 fields or a detection mechanism as additional information. Finally, interpretability techniques applied to our models confirm that the CNN automatically learns to identify the XCO2 plume and to assess emissions from the plume concentrations. These promising results suggest a high potential of CNNs in estimating local CO2 emissions from satellite images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscientific Model Development
Geoscientific Model Development GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
8.60
自引率
9.80%
发文量
352
审稿时长
6-12 weeks
期刊介绍: Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication: * geoscientific model descriptions, from statistical models to box models to GCMs; * development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results; * new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data; * papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data; * model experiment descriptions, including experimental details and project protocols; * full evaluations of previously published models.
期刊最新文献
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model Multivariate adjustment of drizzle bias using machine learning in European climate projections Incorporating Oxygen Isotopes of Oxidized Reactive Nitrogen in the Regional Atmospheric Chemistry Mechanism, version 2 (ICOIN-RACM2)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1