Jin Xu, Lingfeng Wang, Peilin Yang, Haoqing Jiang, Huai Zheng, Li-cong An, Xingtao Liu, G. Cheng
{"title":"通过磁场辅助封闭式超快激光沉积高密度、均匀和超细纳米粒子阵列,实现质子平台的革命性突破","authors":"Jin Xu, Lingfeng Wang, Peilin Yang, Haoqing Jiang, Huai Zheng, Li-cong An, Xingtao Liu, G. Cheng","doi":"10.1088/2631-7990/ad304f","DOIUrl":null,"url":null,"abstract":"\n The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves have garnered significant attention. However, the challenge of large-scale manufacturing of uniform, well-aligned, and tunable plasmonic surfaces has hindered their industrialization. To address this, we present a groundbreaking tunable plasmonic platform design achieved through magnetic field (MF) assisted ultrafast laser direct deposition (MAPLD) in air. Through precise control of metal nanoparticles (NPs), with Cobalt (Co) serving as the model material, employing a magnetic field (MF), and fine-tuning ultrafast laser parameters, we have effectively converted coarse and non-uniform NPs into densely packed, uniform, and ultrafine NPs(~3nm). This revolutionary advancement results in the creation of customizable plasmonic 'hot spots,' which play a pivotal role in Surface-enhanced Raman spectroscopy (SERS) sensors. The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energy enhancement. When the plasmonic nanostructures resonate with incident light, they generate intense local electromagnetic fields, thus vastly increasing the Raman scattering signal. This enhancement leads to an outstanding 2 to 18-fold boost in SERS performance and unparalleled sensing sensitivity down to 10-10 M. Notably, the plasmonic platform also demonstrates robustness, retaining its sensing capability even after undergoing 50 cycles of rinsing and re-loading of chemicals. Moreover, this work adheres to green manufacturing standards, making it an efficient and environmentally friendly method for customizing plasmonic 'hot spots' in SERS devices. Our study not only achieves the formation of high-density, uniform, and ultrafine nanoparticle arrays on a tunable plasmonic platform but also showcases the profound relation between plasmonic resonance and energy enhancement. The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-related applications, including photocatalysis, photovoltaics, and clean water, propelling us closer to a sustainable and cleaner future.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionlizing Plasmonic Platform via Magnetic Field-Assisted Confined Ultrafast Laser Deposition of High-Density, Uniform, and Ultrafine Nanoparticle Arrays\",\"authors\":\"Jin Xu, Lingfeng Wang, Peilin Yang, Haoqing Jiang, Huai Zheng, Li-cong An, Xingtao Liu, G. Cheng\",\"doi\":\"10.1088/2631-7990/ad304f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves have garnered significant attention. However, the challenge of large-scale manufacturing of uniform, well-aligned, and tunable plasmonic surfaces has hindered their industrialization. To address this, we present a groundbreaking tunable plasmonic platform design achieved through magnetic field (MF) assisted ultrafast laser direct deposition (MAPLD) in air. Through precise control of metal nanoparticles (NPs), with Cobalt (Co) serving as the model material, employing a magnetic field (MF), and fine-tuning ultrafast laser parameters, we have effectively converted coarse and non-uniform NPs into densely packed, uniform, and ultrafine NPs(~3nm). This revolutionary advancement results in the creation of customizable plasmonic 'hot spots,' which play a pivotal role in Surface-enhanced Raman spectroscopy (SERS) sensors. The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energy enhancement. When the plasmonic nanostructures resonate with incident light, they generate intense local electromagnetic fields, thus vastly increasing the Raman scattering signal. This enhancement leads to an outstanding 2 to 18-fold boost in SERS performance and unparalleled sensing sensitivity down to 10-10 M. Notably, the plasmonic platform also demonstrates robustness, retaining its sensing capability even after undergoing 50 cycles of rinsing and re-loading of chemicals. Moreover, this work adheres to green manufacturing standards, making it an efficient and environmentally friendly method for customizing plasmonic 'hot spots' in SERS devices. Our study not only achieves the formation of high-density, uniform, and ultrafine nanoparticle arrays on a tunable plasmonic platform but also showcases the profound relation between plasmonic resonance and energy enhancement. The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-related applications, including photocatalysis, photovoltaics, and clean water, propelling us closer to a sustainable and cleaner future.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad304f\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad304f","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Revolutionlizing Plasmonic Platform via Magnetic Field-Assisted Confined Ultrafast Laser Deposition of High-Density, Uniform, and Ultrafine Nanoparticle Arrays
The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves have garnered significant attention. However, the challenge of large-scale manufacturing of uniform, well-aligned, and tunable plasmonic surfaces has hindered their industrialization. To address this, we present a groundbreaking tunable plasmonic platform design achieved through magnetic field (MF) assisted ultrafast laser direct deposition (MAPLD) in air. Through precise control of metal nanoparticles (NPs), with Cobalt (Co) serving as the model material, employing a magnetic field (MF), and fine-tuning ultrafast laser parameters, we have effectively converted coarse and non-uniform NPs into densely packed, uniform, and ultrafine NPs(~3nm). This revolutionary advancement results in the creation of customizable plasmonic 'hot spots,' which play a pivotal role in Surface-enhanced Raman spectroscopy (SERS) sensors. The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energy enhancement. When the plasmonic nanostructures resonate with incident light, they generate intense local electromagnetic fields, thus vastly increasing the Raman scattering signal. This enhancement leads to an outstanding 2 to 18-fold boost in SERS performance and unparalleled sensing sensitivity down to 10-10 M. Notably, the plasmonic platform also demonstrates robustness, retaining its sensing capability even after undergoing 50 cycles of rinsing and re-loading of chemicals. Moreover, this work adheres to green manufacturing standards, making it an efficient and environmentally friendly method for customizing plasmonic 'hot spots' in SERS devices. Our study not only achieves the formation of high-density, uniform, and ultrafine nanoparticle arrays on a tunable plasmonic platform but also showcases the profound relation between plasmonic resonance and energy enhancement. The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-related applications, including photocatalysis, photovoltaics, and clean water, propelling us closer to a sustainable and cleaner future.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.