从字节到可持续性:先进工业人工智能国家的工业人工智能与绿色金融之间的不对称关系

IF 6.3 2区 经济学 Q1 BUSINESS, FINANCE Borsa Istanbul Review Pub Date : 2024-09-01 DOI:10.1016/j.bir.2024.03.010
{"title":"从字节到可持续性:先进工业人工智能国家的工业人工智能与绿色金融之间的不对称关系","authors":"","doi":"10.1016/j.bir.2024.03.010","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of artificial intelligence in industry and the adoption of green finance emphasizing environmental sustainability through technology has become increasingly prominent. This article scrutinizes the asymmetric nexus between industrial artificial intelligence and green finance in the top ten countries leading in industrial artificial intelligence (China, USA, South Korea, Germany, Japan, Canada, UK, Australia, France, and Italy). Preceding studies applied panel data approaches to examine the industrial artificial intelligence-green finance nexus without considering that not all countries had established such a connection autonomously. Conversely, this paper implements a distinctive approach, ‘Quantile-on-Quantile’, which offers both worldwide and nation-specific foresight into the correlation of the variables. The results demonstrate that industrial artificial intelligence increases green finance at specific segments of the data distribution across diverse economies. These outcomes underscore policymakers’ need to approach the development and enactment of policies regarding industrial artificial intelligence and green finance with careful attention and thoughtful deliberation.</p></div>","PeriodicalId":46690,"journal":{"name":"Borsa Istanbul Review","volume":"24 5","pages":"Pages 886-897"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214845024000516/pdfft?md5=048b2b7bc04a0f6d418cad2b374d1565&pid=1-s2.0-S2214845024000516-main.pdf","citationCount":"0","resultStr":"{\"title\":\"From bytes to sustainability: Asymmetric nexus between industrial artificial intelligence and green finance in advanced industrial AI nations\",\"authors\":\"\",\"doi\":\"10.1016/j.bir.2024.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of artificial intelligence in industry and the adoption of green finance emphasizing environmental sustainability through technology has become increasingly prominent. This article scrutinizes the asymmetric nexus between industrial artificial intelligence and green finance in the top ten countries leading in industrial artificial intelligence (China, USA, South Korea, Germany, Japan, Canada, UK, Australia, France, and Italy). Preceding studies applied panel data approaches to examine the industrial artificial intelligence-green finance nexus without considering that not all countries had established such a connection autonomously. Conversely, this paper implements a distinctive approach, ‘Quantile-on-Quantile’, which offers both worldwide and nation-specific foresight into the correlation of the variables. The results demonstrate that industrial artificial intelligence increases green finance at specific segments of the data distribution across diverse economies. These outcomes underscore policymakers’ need to approach the development and enactment of policies regarding industrial artificial intelligence and green finance with careful attention and thoughtful deliberation.</p></div>\",\"PeriodicalId\":46690,\"journal\":{\"name\":\"Borsa Istanbul Review\",\"volume\":\"24 5\",\"pages\":\"Pages 886-897\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214845024000516/pdfft?md5=048b2b7bc04a0f6d418cad2b374d1565&pid=1-s2.0-S2214845024000516-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Borsa Istanbul Review\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214845024000516\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Borsa Istanbul Review","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214845024000516","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

人工智能与工业的结合以及通过技术实现强调环境可持续性的绿色金融的采用已变得日益突出。本文研究了工业人工智能领先的十大国家(中国、美国、韩国、德国、日本、加拿大、英国、澳大利亚、法国和意大利)的工业人工智能与绿色金融之间的非对称关系。之前的研究采用面板数据方法研究工业人工智能与绿色金融之间的关系,但没有考虑到并非所有国家都自主建立了这种联系。与此相反,本文采用了一种独特的方法,即 "量化对量化"(Quantile-on-Quantile),这种方法既能预测全球变量的相关性,也能预测具体国家的相关性。结果表明,在不同经济体的数据分布中,工业人工智能增加了特定部分的绿色金融。这些结果突出表明,政策制定者在制定和颁布有关工业人工智能和绿色金融的政策时,需要认真关注和深思熟虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From bytes to sustainability: Asymmetric nexus between industrial artificial intelligence and green finance in advanced industrial AI nations

The integration of artificial intelligence in industry and the adoption of green finance emphasizing environmental sustainability through technology has become increasingly prominent. This article scrutinizes the asymmetric nexus between industrial artificial intelligence and green finance in the top ten countries leading in industrial artificial intelligence (China, USA, South Korea, Germany, Japan, Canada, UK, Australia, France, and Italy). Preceding studies applied panel data approaches to examine the industrial artificial intelligence-green finance nexus without considering that not all countries had established such a connection autonomously. Conversely, this paper implements a distinctive approach, ‘Quantile-on-Quantile’, which offers both worldwide and nation-specific foresight into the correlation of the variables. The results demonstrate that industrial artificial intelligence increases green finance at specific segments of the data distribution across diverse economies. These outcomes underscore policymakers’ need to approach the development and enactment of policies regarding industrial artificial intelligence and green finance with careful attention and thoughtful deliberation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
3.80%
发文量
130
审稿时长
26 days
期刊介绍: Peer Review under the responsibility of Borsa İstanbul Anonim Sirketi. Borsa İstanbul Review provides a scholarly platform for empirical financial studies including but not limited to financial markets and institutions, financial economics, investor behavior, financial centers and market structures, corporate finance, recent economic and financial trends. Micro and macro data applications and comparative studies are welcome. Country coverage includes advanced, emerging and developing economies. In particular, we would like to publish empirical papers with significant policy implications and encourage submissions in the following areas: Research Topics: • Investments and Portfolio Management • Behavioral Finance • Financial Markets and Institutions • Market Microstructure • Islamic Finance • Financial Risk Management • Valuation • Capital Markets Governance • Financial Regulations
期刊最新文献
Editorial Board What determines the success of equity derivatives markets? A global perspective Linear extrapolation and model-free option implied moments Financial derivative instruments and their applications in Islamic banking and finance: Fundamentals, structures and pricing mechanisms The effects of non-deliverable forward programs of emerging-market central banks: A synthetic control approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1