{"title":"高层建筑二次供水中自来水微生物群的变化","authors":"Manjie Li , Zhaowei Liu , Yongcan Chen","doi":"10.1016/j.ese.2024.100413","DOIUrl":null,"url":null,"abstract":"<div><p>In high-rise buildings, secondary water supply systems (SWSSs) are pivotal yet provide a conducive milieu for microbial proliferation due to intermittent flow, low disinfectant residual, and high specific pipe-surface area, raising concerns about tap water quality deterioration. Despite their ubiquity, a comprehensive understanding of bacterial community dynamics within SWSSs remains elusive. Here we show how intrinsic SWSS variables critically shape the tap water microbiome at distal ends. In an office setting, distinct from residential complexes, the diversity in piping materials instigates a noticeable bacterial community shift, exemplified by a transition from α-Proteobacteria to γ-Proteobacteria dominance, alongside an upsurge in bacterial diversity and microbial propagation potential. Extended water retention within SWSSs invariably escalates microbial regrowth propensities and modulates bacterial consortia, yet secondary disinfection emerges as a robust strategy for preserving water quality integrity. Additionally, the regularity of water usage modulates proximal flow dynamics, thereby influencing tap water's microbial landscape. Insights garnered from this investigation lay the groundwork for devising effective interventions aimed at safeguarding microbiological standards at the consumer's endpoint.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"20 ","pages":"Article 100413"},"PeriodicalIF":14.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000279/pdfft?md5=b893cbced8703daade210db2f6b7aa00&pid=1-s2.0-S2666498424000279-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tap water microbiome shifts in secondary water supply for high-rise buildings\",\"authors\":\"Manjie Li , Zhaowei Liu , Yongcan Chen\",\"doi\":\"10.1016/j.ese.2024.100413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In high-rise buildings, secondary water supply systems (SWSSs) are pivotal yet provide a conducive milieu for microbial proliferation due to intermittent flow, low disinfectant residual, and high specific pipe-surface area, raising concerns about tap water quality deterioration. Despite their ubiquity, a comprehensive understanding of bacterial community dynamics within SWSSs remains elusive. Here we show how intrinsic SWSS variables critically shape the tap water microbiome at distal ends. In an office setting, distinct from residential complexes, the diversity in piping materials instigates a noticeable bacterial community shift, exemplified by a transition from α-Proteobacteria to γ-Proteobacteria dominance, alongside an upsurge in bacterial diversity and microbial propagation potential. Extended water retention within SWSSs invariably escalates microbial regrowth propensities and modulates bacterial consortia, yet secondary disinfection emerges as a robust strategy for preserving water quality integrity. Additionally, the regularity of water usage modulates proximal flow dynamics, thereby influencing tap water's microbial landscape. Insights garnered from this investigation lay the groundwork for devising effective interventions aimed at safeguarding microbiological standards at the consumer's endpoint.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"20 \",\"pages\":\"Article 100413\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000279/pdfft?md5=b893cbced8703daade210db2f6b7aa00&pid=1-s2.0-S2666498424000279-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000279\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000279","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Tap water microbiome shifts in secondary water supply for high-rise buildings
In high-rise buildings, secondary water supply systems (SWSSs) are pivotal yet provide a conducive milieu for microbial proliferation due to intermittent flow, low disinfectant residual, and high specific pipe-surface area, raising concerns about tap water quality deterioration. Despite their ubiquity, a comprehensive understanding of bacterial community dynamics within SWSSs remains elusive. Here we show how intrinsic SWSS variables critically shape the tap water microbiome at distal ends. In an office setting, distinct from residential complexes, the diversity in piping materials instigates a noticeable bacterial community shift, exemplified by a transition from α-Proteobacteria to γ-Proteobacteria dominance, alongside an upsurge in bacterial diversity and microbial propagation potential. Extended water retention within SWSSs invariably escalates microbial regrowth propensities and modulates bacterial consortia, yet secondary disinfection emerges as a robust strategy for preserving water quality integrity. Additionally, the regularity of water usage modulates proximal flow dynamics, thereby influencing tap water's microbial landscape. Insights garnered from this investigation lay the groundwork for devising effective interventions aimed at safeguarding microbiological standards at the consumer's endpoint.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.