关于(不)依赖算法--决策理论的解释

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-26 DOI:10.1016/j.jmp.2024.102844
Bernard Sinclair-Desgagné
{"title":"关于(不)依赖算法--决策理论的解释","authors":"Bernard Sinclair-Desgagné","doi":"10.1016/j.jmp.2024.102844","DOIUrl":null,"url":null,"abstract":"<div><p>A wealth of empirical evidence shows that people display opposite behaviors when deciding whether to rely on an algorithm, even if it is inexpensive to do so and using the algorithm should enhance their own performance. This paper develops a formal theory to explain some of these conflicting facts and submit new testable predictions. Drawing from decision analysis, I invoke two key notions: the ‘value of information’ and the ‘value of control’. The value of information matters to users of algorithms like recommender systems and prediction machines, which essentially provide information. I find that ambiguity aversion or a subjective cost of employing an algorithm will tend to decrease the value of algorithmic information, while repeated exposure to an algorithm might not always increase this value. The value of control matters to users who may delegate decision making to an algorithm. I model how, under partial delegation, imperfect understanding of what the algorithm actually does (so the algorithm is in fact a black box) can cause algorithm aversion. Some possible remedies are formulated and discussed.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the (non-) reliance on algorithms—A decision-theoretic account\",\"authors\":\"Bernard Sinclair-Desgagné\",\"doi\":\"10.1016/j.jmp.2024.102844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A wealth of empirical evidence shows that people display opposite behaviors when deciding whether to rely on an algorithm, even if it is inexpensive to do so and using the algorithm should enhance their own performance. This paper develops a formal theory to explain some of these conflicting facts and submit new testable predictions. Drawing from decision analysis, I invoke two key notions: the ‘value of information’ and the ‘value of control’. The value of information matters to users of algorithms like recommender systems and prediction machines, which essentially provide information. I find that ambiguity aversion or a subjective cost of employing an algorithm will tend to decrease the value of algorithmic information, while repeated exposure to an algorithm might not always increase this value. The value of control matters to users who may delegate decision making to an algorithm. I model how, under partial delegation, imperfect understanding of what the algorithm actually does (so the algorithm is in fact a black box) can cause algorithm aversion. Some possible remedies are formulated and discussed.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249624000142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

大量经验证据表明,人们在决定是否依赖算法时会表现出相反的行为,即使这样做的成本很低,而且使用算法应该会提高自己的绩效。本文提出了一个正式理论来解释其中一些相互矛盾的事实,并提交了新的可检验预测。借鉴决策分析,我引用了两个关键概念:"信息价值 "和 "控制价值"。信息的价值对于推荐系统和预测机等算法的用户来说非常重要,因为这些算法的本质是提供信息。我发现,模糊厌恶或使用算法的主观成本往往会降低算法信息的价值,而反复接触算法并不一定会增加这种价值。对于可能将决策权委托给算法的用户来说,控制权的价值非常重要。我模拟了在部分委托的情况下,对算法实际作用的不完全了解(因此算法实际上是一个黑盒子)是如何导致算法厌恶的。本文提出并讨论了一些可能的补救措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the (non-) reliance on algorithms—A decision-theoretic account

A wealth of empirical evidence shows that people display opposite behaviors when deciding whether to rely on an algorithm, even if it is inexpensive to do so and using the algorithm should enhance their own performance. This paper develops a formal theory to explain some of these conflicting facts and submit new testable predictions. Drawing from decision analysis, I invoke two key notions: the ‘value of information’ and the ‘value of control’. The value of information matters to users of algorithms like recommender systems and prediction machines, which essentially provide information. I find that ambiguity aversion or a subjective cost of employing an algorithm will tend to decrease the value of algorithmic information, while repeated exposure to an algorithm might not always increase this value. The value of control matters to users who may delegate decision making to an algorithm. I model how, under partial delegation, imperfect understanding of what the algorithm actually does (so the algorithm is in fact a black box) can cause algorithm aversion. Some possible remedies are formulated and discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1