调节炎症反应,促进脊髓损伤后的神经恢复

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING Tissue engineering and regenerative medicine Pub Date : 2024-04-01 Epub Date: 2024-03-26 DOI:10.1007/s13770-024-00639-z
Young-Kwon Seo
{"title":"调节炎症反应,促进脊髓损伤后的神经恢复","authors":"Young-Kwon Seo","doi":"10.1007/s13770-024-00639-z","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation can occur at the wound site, and immune cells are necessary to trigger wound healing and tissue regeneration after injury. It is partly initiated by the rapid migration of immune cells such as neutrophils, inflammatory monocytes, and macrophages after spinal cord injury (SCI). Secondary inflammation can increase the wound area; thus, the function of tissues below the injury levels. Monocytes can differentiate into macrophages, and the macrophage phenotype can change from a pro-inflammatory phenotype to an anti-inflammatory phenotype. Therefore, various studies on immunomodulation have been performed to suppress secondary inflammation upon nerve damage. This editorial commentary focuses on various therapeutic methods that modulate inflammation and promote functional regeneration after SCI.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"367-368"},"PeriodicalIF":4.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987416/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulation of Inflammatory Responses to Enhance Nerve Recovery after Spinal Cord Injury.\",\"authors\":\"Young-Kwon Seo\",\"doi\":\"10.1007/s13770-024-00639-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammation can occur at the wound site, and immune cells are necessary to trigger wound healing and tissue regeneration after injury. It is partly initiated by the rapid migration of immune cells such as neutrophils, inflammatory monocytes, and macrophages after spinal cord injury (SCI). Secondary inflammation can increase the wound area; thus, the function of tissues below the injury levels. Monocytes can differentiate into macrophages, and the macrophage phenotype can change from a pro-inflammatory phenotype to an anti-inflammatory phenotype. Therefore, various studies on immunomodulation have been performed to suppress secondary inflammation upon nerve damage. This editorial commentary focuses on various therapeutic methods that modulate inflammation and promote functional regeneration after SCI.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"367-368\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-024-00639-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00639-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

伤口部位会出现炎症,免疫细胞是损伤后引发伤口愈合和组织再生的必要条件。脊髓损伤(SCI)后,中性粒细胞、炎性单核细胞和巨噬细胞等免疫细胞的快速迁移是引发炎症的部分原因。继发性炎症会增加伤口面积,从而影响损伤程度以下组织的功能。单核细胞可分化为巨噬细胞,巨噬细胞表型可从促炎表型转变为抗炎表型。因此,人们进行了各种免疫调节研究,以抑制神经损伤后的继发性炎症。这篇社论评论将重点讨论调节炎症和促进 SCI 后功能再生的各种治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation of Inflammatory Responses to Enhance Nerve Recovery after Spinal Cord Injury.

Inflammation can occur at the wound site, and immune cells are necessary to trigger wound healing and tissue regeneration after injury. It is partly initiated by the rapid migration of immune cells such as neutrophils, inflammatory monocytes, and macrophages after spinal cord injury (SCI). Secondary inflammation can increase the wound area; thus, the function of tissues below the injury levels. Monocytes can differentiate into macrophages, and the macrophage phenotype can change from a pro-inflammatory phenotype to an anti-inflammatory phenotype. Therefore, various studies on immunomodulation have been performed to suppress secondary inflammation upon nerve damage. This editorial commentary focuses on various therapeutic methods that modulate inflammation and promote functional regeneration after SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
期刊最新文献
Development of Zinc-Containing Chitosan/Gelatin Coatings with Immunomodulatory Effect for Soft Tissue Sealing around Dental Implants. Enhancing Skin Regeneration Efficacy of Human Dermal Fibroblasts Using Carboxymethyl Cellulose-Coated Biodegradable Polymer. Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying Circ-Tulp4 Attenuate Diabetes Mellitus with Nonalcoholic Fatty Liver Disease by Inhibiting Cell Pyroptosis through the HNRNPC/ABHD6 Axis. Effects of Late-Passage Small Umbilical Cord-Derived Fast Proliferating Cells on Tenocytes from Degenerative Rotator Cuff Tears under an Interleukin 1β-Induced Tendinopathic Environment. A Study on iPSC-Associated Factors in the Generation of Hepatocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1