视觉方向感知中角度扩展的默认参照框架

Q2 Medicine Vision (Switzerland) Pub Date : 2024-02-21 DOI:10.3390/vision8010007
Prince U D Tardeh, Crystal Xu, Frank H Durgin
{"title":"视觉方向感知中角度扩展的默认参照框架","authors":"Prince U D Tardeh, Crystal Xu, Frank H Durgin","doi":"10.3390/vision8010007","DOIUrl":null,"url":null,"abstract":"<p><p>Prior work has shown that perceived angular elevation relative to a visible horizon/ground plane is exaggerated with a gain of about 1.5. Here, we investigated whether estimates of angular elevation remain exaggerated when no such visual gravitational reference is provided. This was investigated using a series of five experiments, with most using a novel apparatus to view a large field-of-view stereoscopic virtual environment while lying supine, looking straight up. Magnitude estimation methods were used as well as psychometric matches to internal standards with a total of 133 human participants. Generally, it was found that the exaggerated scaling of elevation seemed to be a default for 3D space, even if testing was performed in virtual environments that were nearly empty. Indeed, for supine observers, a strong exaggeration was found even for azimuthal judgments, which is consistent with the idea that, when looking upward, all deviations are in elevation. This suggests that the overarching gravitational frame often serves as a default reference frame.</p>","PeriodicalId":36586,"journal":{"name":"Vision (Switzerland)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976159/pdf/","citationCount":"0","resultStr":"{\"title\":\"Default Reference Frames for Angular Expansion in the Perception of Visual Direction.\",\"authors\":\"Prince U D Tardeh, Crystal Xu, Frank H Durgin\",\"doi\":\"10.3390/vision8010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prior work has shown that perceived angular elevation relative to a visible horizon/ground plane is exaggerated with a gain of about 1.5. Here, we investigated whether estimates of angular elevation remain exaggerated when no such visual gravitational reference is provided. This was investigated using a series of five experiments, with most using a novel apparatus to view a large field-of-view stereoscopic virtual environment while lying supine, looking straight up. Magnitude estimation methods were used as well as psychometric matches to internal standards with a total of 133 human participants. Generally, it was found that the exaggerated scaling of elevation seemed to be a default for 3D space, even if testing was performed in virtual environments that were nearly empty. Indeed, for supine observers, a strong exaggeration was found even for azimuthal judgments, which is consistent with the idea that, when looking upward, all deviations are in elevation. This suggests that the overarching gravitational frame often serves as a default reference frame.</p>\",\"PeriodicalId\":36586,\"journal\":{\"name\":\"Vision (Switzerland)\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976159/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vision8010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vision8010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

先前的研究表明,相对于可见地平线/地平面的感知角仰角会被夸大,增益约为 1.5。在这里,我们研究了在没有这种视觉重力参照物的情况下,对角度仰角的估计是否仍然会被夸大。我们使用了一系列共五项实验来研究这一问题,其中大部分实验使用了一种新颖的仪器,让实验者仰卧直视大视场立体虚拟环境。实验中使用了幅度估计方法以及与内部标准相匹配的心理测量方法,共有 133 人参加了实验。一般来说,即使测试是在几乎空无一物的虚拟环境中进行的,夸张的仰角缩放似乎也是三维空间的默认设置。事实上,对于仰卧的观察者来说,即使是方位角的判断也会出现强烈的夸大,这与仰视时所有偏差都是仰角的观点是一致的。这表明,总体重力框架通常充当默认参考框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Default Reference Frames for Angular Expansion in the Perception of Visual Direction.

Prior work has shown that perceived angular elevation relative to a visible horizon/ground plane is exaggerated with a gain of about 1.5. Here, we investigated whether estimates of angular elevation remain exaggerated when no such visual gravitational reference is provided. This was investigated using a series of five experiments, with most using a novel apparatus to view a large field-of-view stereoscopic virtual environment while lying supine, looking straight up. Magnitude estimation methods were used as well as psychometric matches to internal standards with a total of 133 human participants. Generally, it was found that the exaggerated scaling of elevation seemed to be a default for 3D space, even if testing was performed in virtual environments that were nearly empty. Indeed, for supine observers, a strong exaggeration was found even for azimuthal judgments, which is consistent with the idea that, when looking upward, all deviations are in elevation. This suggests that the overarching gravitational frame often serves as a default reference frame.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vision (Switzerland)
Vision (Switzerland) Health Professions-Optometry
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
11 weeks
期刊最新文献
Optical Bench Evaluation of a Novel, Hydrophobic, Acrylic, One-Piece, Polyfocal Intraocular Lens with a "Zig-Zag" L-Loop Haptic Design. Optimal Timing for Intraocular Pressure Measurement Following Phacoemulsification Cataract Surgery: A Systematic Review and a Meta-Analysis. Corneal Endothelial Microscopy: Does a Manual Recognition of the Endothelial Cells Help the Morphometric Analysis Compared to a Fully Automatic Approach? Combined Epiretinal Proliferation and Internal Limiting Membrane Inverted Flap for the Treatment of Large Macular Holes. Comparison of Four Methods for Measuring Heterophoria and Accommodative Convergence over Accommodation Ratio.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1