{"title":"使用反转恢复 T1 加权涡轮场回波序列绘制原生心肌 T1 图。","authors":"Katsuhiro Kida, Takamasa Kurosaki, Ryohei Fukui, Ryutaro Matsuura, Sachiko Goto","doi":"10.1007/s12194-024-00795-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes the use of the inversion recovery T<sub>1</sub>-weighted turbo field echo (IR-T<sub>1</sub>TFE) sequence for myocardial T<sub>1</sub> mapping and compares the results obtained with those of the modified Look-Locker inversion recovery (MOLLI) method for accuracy, precision, and reproducibility. A phantom containing seven vials with different T<sub>1</sub> values was imaged, thereby comparing the T<sub>1</sub> measurements between the inversion recovery spin-echo (IR-SE) technique, MOLLI, and the IR-T<sub>1</sub>TFE. The accuracy, precision, and reproducibility of the T<sub>1</sub>-mapping sequences were analyzed in a phantom study. Fifteen healthy subjects were recruited for the in vivo comparison of native myocardial T<sub>1</sub> mapping using MOLLI and IR-T<sub>1</sub>TFE sequences. After myocardium segmentation, the T<sub>1</sub> value of the entire myocardium was calculated. In the phantom study, excellent accuracy was achieved using IR-T<sub>1</sub>TFE for all T<sub>1</sub> ranges. MOLLI displayed lower accuracy than IR-T<sub>1</sub>TFE (p =0.016), substantially underestimating T<sub>1</sub> at large T<sub>1</sub> values (> 1000 ms). In the in vivo study, the first mean myocardial T<sub>1</sub> values ± SD using MOLLI and IR-T<sub>1</sub>TFE were 1306 ± 70 ms and 1484 ± 28 ms, respectively, and the second were 1297 ± 68 ms and 1474 ± 43 ms, respectively. The native myocardial T<sub>1</sub> obtained with MOLLI was lower than that of IR-T<sub>1</sub>TFE (p < 0.001). The reproducibility of native myocardial T<sub>1</sub> mapping within the same sequence was not statistically significant (p = 0.11). This study demonstrates the utility and validity of myocardial T<sub>1</sub> mapping using IR-T<sub>1</sub>TFE, which is a common sequence. This method was found to have high accuracy and reproducibility.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Native myocardial T<sub>1</sub> mapping using inversion recovery T<sub>1</sub>-weighted turbo field echo sequence.\",\"authors\":\"Katsuhiro Kida, Takamasa Kurosaki, Ryohei Fukui, Ryutaro Matsuura, Sachiko Goto\",\"doi\":\"10.1007/s12194-024-00795-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes the use of the inversion recovery T<sub>1</sub>-weighted turbo field echo (IR-T<sub>1</sub>TFE) sequence for myocardial T<sub>1</sub> mapping and compares the results obtained with those of the modified Look-Locker inversion recovery (MOLLI) method for accuracy, precision, and reproducibility. A phantom containing seven vials with different T<sub>1</sub> values was imaged, thereby comparing the T<sub>1</sub> measurements between the inversion recovery spin-echo (IR-SE) technique, MOLLI, and the IR-T<sub>1</sub>TFE. The accuracy, precision, and reproducibility of the T<sub>1</sub>-mapping sequences were analyzed in a phantom study. Fifteen healthy subjects were recruited for the in vivo comparison of native myocardial T<sub>1</sub> mapping using MOLLI and IR-T<sub>1</sub>TFE sequences. After myocardium segmentation, the T<sub>1</sub> value of the entire myocardium was calculated. In the phantom study, excellent accuracy was achieved using IR-T<sub>1</sub>TFE for all T<sub>1</sub> ranges. MOLLI displayed lower accuracy than IR-T<sub>1</sub>TFE (p =0.016), substantially underestimating T<sub>1</sub> at large T<sub>1</sub> values (> 1000 ms). In the in vivo study, the first mean myocardial T<sub>1</sub> values ± SD using MOLLI and IR-T<sub>1</sub>TFE were 1306 ± 70 ms and 1484 ± 28 ms, respectively, and the second were 1297 ± 68 ms and 1474 ± 43 ms, respectively. The native myocardial T<sub>1</sub> obtained with MOLLI was lower than that of IR-T<sub>1</sub>TFE (p < 0.001). The reproducibility of native myocardial T<sub>1</sub> mapping within the same sequence was not statistically significant (p = 0.11). This study demonstrates the utility and validity of myocardial T<sub>1</sub> mapping using IR-T<sub>1</sub>TFE, which is a common sequence. This method was found to have high accuracy and reproducibility.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00795-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00795-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Native myocardial T1 mapping using inversion recovery T1-weighted turbo field echo sequence.
This study proposes the use of the inversion recovery T1-weighted turbo field echo (IR-T1TFE) sequence for myocardial T1 mapping and compares the results obtained with those of the modified Look-Locker inversion recovery (MOLLI) method for accuracy, precision, and reproducibility. A phantom containing seven vials with different T1 values was imaged, thereby comparing the T1 measurements between the inversion recovery spin-echo (IR-SE) technique, MOLLI, and the IR-T1TFE. The accuracy, precision, and reproducibility of the T1-mapping sequences were analyzed in a phantom study. Fifteen healthy subjects were recruited for the in vivo comparison of native myocardial T1 mapping using MOLLI and IR-T1TFE sequences. After myocardium segmentation, the T1 value of the entire myocardium was calculated. In the phantom study, excellent accuracy was achieved using IR-T1TFE for all T1 ranges. MOLLI displayed lower accuracy than IR-T1TFE (p =0.016), substantially underestimating T1 at large T1 values (> 1000 ms). In the in vivo study, the first mean myocardial T1 values ± SD using MOLLI and IR-T1TFE were 1306 ± 70 ms and 1484 ± 28 ms, respectively, and the second were 1297 ± 68 ms and 1474 ± 43 ms, respectively. The native myocardial T1 obtained with MOLLI was lower than that of IR-T1TFE (p < 0.001). The reproducibility of native myocardial T1 mapping within the same sequence was not statistically significant (p = 0.11). This study demonstrates the utility and validity of myocardial T1 mapping using IR-T1TFE, which is a common sequence. This method was found to have high accuracy and reproducibility.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.