在陷波离子量子计算机上估算静电相互作用能量

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-03-26 DOI:10.1021/acscentsci.4c00058
Pauline J. Ollitrault*, Matthias Loipersberger, Robert M. Parrish, Alexander Erhard, Christine Maier, Christian Sommer, Juris Ulmanis, Thomas Monz, Christian Gogolin, Christofer S. Tautermann, Gian-Luca R. Anselmetti, Matthias Degroote, Nikolaj Moll, Raffaele Santagati and Michael Streif*, 
{"title":"在陷波离子量子计算机上估算静电相互作用能量","authors":"Pauline J. Ollitrault*,&nbsp;Matthias Loipersberger,&nbsp;Robert M. Parrish,&nbsp;Alexander Erhard,&nbsp;Christine Maier,&nbsp;Christian Sommer,&nbsp;Juris Ulmanis,&nbsp;Thomas Monz,&nbsp;Christian Gogolin,&nbsp;Christofer S. Tautermann,&nbsp;Gian-Luca R. Anselmetti,&nbsp;Matthias Degroote,&nbsp;Nikolaj Moll,&nbsp;Raffaele Santagati and Michael Streif*,&nbsp;","doi":"10.1021/acscentsci.4c00058","DOIUrl":null,"url":null,"abstract":"<p >We present the first hardware implementation of electrostatic interaction energies by using a trapped-ion quantum computer. As test system for our computation, we focus on the reduction of NO to N<sub>2</sub>O catalyzed by a nitric oxide reductase (NOR). The quantum computer is used to generate an approximate ground state within the NOR active space. To efficiently measure the necessary one-particle density matrices, we incorporate fermionic basis rotations into the quantum circuit without extending the circuit length, laying the groundwork for further efficient measurement routines using factorizations. Measurements in the computational basis are then used as inputs for computing the electrostatic interaction energies on a classical computer. Our experimental results strongly agree with classical noise-less simulations of the same circuits, finding electrostatic interaction energies within chemical accuracy despite hardware noise. This work shows that algorithms tailored to specific observables of interest, such as interaction energies, may require significantly fewer quantum resources than individual ground state energies would require in the straightforward supermolecular approach.</p><p >The first demonstration of the computation of electrostatic interaction energies on a trapped-ion quantum computer, tested on the reduction of NO to N<sub>2</sub>O, shows strong agreement with classical simulations.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c00058","citationCount":"0","resultStr":"{\"title\":\"Estimation of Electrostatic Interaction Energies on a Trapped-Ion Quantum Computer\",\"authors\":\"Pauline J. Ollitrault*,&nbsp;Matthias Loipersberger,&nbsp;Robert M. Parrish,&nbsp;Alexander Erhard,&nbsp;Christine Maier,&nbsp;Christian Sommer,&nbsp;Juris Ulmanis,&nbsp;Thomas Monz,&nbsp;Christian Gogolin,&nbsp;Christofer S. Tautermann,&nbsp;Gian-Luca R. Anselmetti,&nbsp;Matthias Degroote,&nbsp;Nikolaj Moll,&nbsp;Raffaele Santagati and Michael Streif*,&nbsp;\",\"doi\":\"10.1021/acscentsci.4c00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present the first hardware implementation of electrostatic interaction energies by using a trapped-ion quantum computer. As test system for our computation, we focus on the reduction of NO to N<sub>2</sub>O catalyzed by a nitric oxide reductase (NOR). The quantum computer is used to generate an approximate ground state within the NOR active space. To efficiently measure the necessary one-particle density matrices, we incorporate fermionic basis rotations into the quantum circuit without extending the circuit length, laying the groundwork for further efficient measurement routines using factorizations. Measurements in the computational basis are then used as inputs for computing the electrostatic interaction energies on a classical computer. Our experimental results strongly agree with classical noise-less simulations of the same circuits, finding electrostatic interaction energies within chemical accuracy despite hardware noise. This work shows that algorithms tailored to specific observables of interest, such as interaction energies, may require significantly fewer quantum resources than individual ground state energies would require in the straightforward supermolecular approach.</p><p >The first demonstration of the computation of electrostatic interaction energies on a trapped-ion quantum computer, tested on the reduction of NO to N<sub>2</sub>O, shows strong agreement with classical simulations.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c00058\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.4c00058\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c00058","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们首次利用困离子量子计算机对静电相互作用能量进行了硬件实现。作为计算的测试系统,我们重点研究了一氧化氮还原酶(NOR)催化 NO 还原成 N2O 的过程。量子计算机用于生成 NOR 活性空间内的近似基态。为了有效测量必要的单粒子密度矩阵,我们在不延长电路长度的情况下将费米子基旋转纳入量子电路,为进一步使用因式分解进行高效测量奠定了基础。然后,计算基础中的测量结果将作为在经典计算机上计算静电相互作用能量的输入。我们的实验结果与相同电路的经典无噪声仿真结果非常吻合,尽管存在硬件噪声,但找到的静电相互作用能仍在化学精度范围内。这项工作表明,与直接的超分子方法计算单个基态能量所需的量子资源相比,针对相互作用能量等特定观测指标量身定制的算法所需的量子资源可能要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Electrostatic Interaction Energies on a Trapped-Ion Quantum Computer

We present the first hardware implementation of electrostatic interaction energies by using a trapped-ion quantum computer. As test system for our computation, we focus on the reduction of NO to N2O catalyzed by a nitric oxide reductase (NOR). The quantum computer is used to generate an approximate ground state within the NOR active space. To efficiently measure the necessary one-particle density matrices, we incorporate fermionic basis rotations into the quantum circuit without extending the circuit length, laying the groundwork for further efficient measurement routines using factorizations. Measurements in the computational basis are then used as inputs for computing the electrostatic interaction energies on a classical computer. Our experimental results strongly agree with classical noise-less simulations of the same circuits, finding electrostatic interaction energies within chemical accuracy despite hardware noise. This work shows that algorithms tailored to specific observables of interest, such as interaction energies, may require significantly fewer quantum resources than individual ground state energies would require in the straightforward supermolecular approach.

The first demonstration of the computation of electrostatic interaction energies on a trapped-ion quantum computer, tested on the reduction of NO to N2O, shows strong agreement with classical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Spatial Visualization of A-to-I Editing in Cells Using Endonuclease V Immunostaining Assay (EndoVIA) Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin A Novel Prodrug Strategy Based on Reversibly Degradable Guanidine Imides for High Oral Bioavailability and Prolonged Pharmacokinetics of Broad-Spectrum Anti-influenza Agents Correction to “A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting” A Conversation with Rob Jackson
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1