利用卷积神经网络进行手语检测

3区 计算机科学 Q1 Computer Science Journal of Ambient Intelligence and Humanized Computing Pub Date : 2024-03-26 DOI:10.1007/s12652-024-04761-7
Pranati Rakshit, Sarbajeet Paul, Shruti Dey
{"title":"利用卷积神经网络进行手语检测","authors":"Pranati Rakshit, Sarbajeet Paul, Shruti Dey","doi":"10.1007/s12652-024-04761-7","DOIUrl":null,"url":null,"abstract":"<p>Sign language recognition is an important social issue to be addressed which can benefit the deaf and hard of hearing community by providing easier and faster communication. Some previous studies on sign language recognition have used complex input modalities and feature extraction methods, limiting their practical applicability. This research aims to compare two custom-made convolutional neural network (CNN) models for recognizing American Sign Language (ASL) letters from A to Z, and determine which model performs better. The proposed models utilize a combination of CNN and Softmax activation function, which are powerful and widely used classification methods in the field of computer vision. The purpose of the proposed study is to compare the performance of two specially created CNN models for identifying 26 distinct hand signals that represent the 26 English alphabets. The study found that Model_2 had better overall performance than Model_1, with an accuracy of 98.44% and F1 score 98.41%. However, the performance of each model varied depending on the specific label, suggesting that the choice of model may depend on the specific use case and the labels of interest. This research contributes to the growing field of sign language recognition using deep learning techniques and highlights the importance of designing custom models.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign language detection using convolutional neural network\",\"authors\":\"Pranati Rakshit, Sarbajeet Paul, Shruti Dey\",\"doi\":\"10.1007/s12652-024-04761-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sign language recognition is an important social issue to be addressed which can benefit the deaf and hard of hearing community by providing easier and faster communication. Some previous studies on sign language recognition have used complex input modalities and feature extraction methods, limiting their practical applicability. This research aims to compare two custom-made convolutional neural network (CNN) models for recognizing American Sign Language (ASL) letters from A to Z, and determine which model performs better. The proposed models utilize a combination of CNN and Softmax activation function, which are powerful and widely used classification methods in the field of computer vision. The purpose of the proposed study is to compare the performance of two specially created CNN models for identifying 26 distinct hand signals that represent the 26 English alphabets. The study found that Model_2 had better overall performance than Model_1, with an accuracy of 98.44% and F1 score 98.41%. However, the performance of each model varied depending on the specific label, suggesting that the choice of model may depend on the specific use case and the labels of interest. This research contributes to the growing field of sign language recognition using deep learning techniques and highlights the importance of designing custom models.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04761-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04761-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

手语识别是一个亟待解决的重要社会问题,它能为聋人和重听者提供更方便快捷的交流,从而使他们受益。之前一些关于手语识别的研究使用了复杂的输入模式和特征提取方法,限制了其实际应用性。本研究旨在比较两种定制的卷积神经网络(CNN)模型,以识别从 A 到 Z 的美国手语(ASL)字母,并确定哪种模型性能更好。所提出的模型结合使用了 CNN 和 Softmax 激活函数,这两种方法都是计算机视觉领域中强大且广泛使用的分类方法。拟议研究的目的是比较两个专门创建的 CNN 模型在识别代表 26 个英文字母的 26 个不同手势方面的性能。研究发现,Model_2 的整体性能优于 Model_1,准确率为 98.44%,F1 分数为 98.41%。然而,每个模型的性能因具体标签而异,这表明模型的选择可能取决于具体的使用情况和感兴趣的标签。这项研究为使用深度学习技术进行手语识别这一日益增长的领域做出了贡献,并强调了设计定制模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sign language detection using convolutional neural network

Sign language recognition is an important social issue to be addressed which can benefit the deaf and hard of hearing community by providing easier and faster communication. Some previous studies on sign language recognition have used complex input modalities and feature extraction methods, limiting their practical applicability. This research aims to compare two custom-made convolutional neural network (CNN) models for recognizing American Sign Language (ASL) letters from A to Z, and determine which model performs better. The proposed models utilize a combination of CNN and Softmax activation function, which are powerful and widely used classification methods in the field of computer vision. The purpose of the proposed study is to compare the performance of two specially created CNN models for identifying 26 distinct hand signals that represent the 26 English alphabets. The study found that Model_2 had better overall performance than Model_1, with an accuracy of 98.44% and F1 score 98.41%. However, the performance of each model varied depending on the specific label, suggesting that the choice of model may depend on the specific use case and the labels of interest. This research contributes to the growing field of sign language recognition using deep learning techniques and highlights the importance of designing custom models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ambient Intelligence and Humanized Computing
Journal of Ambient Intelligence and Humanized Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.60
自引率
0.00%
发文量
854
期刊介绍: The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to): Pervasive/Ubiquitous Computing and Applications Cognitive wireless sensor network Embedded Systems and Software Mobile Computing and Wireless Communications Next Generation Multimedia Systems Security, Privacy and Trust Service and Semantic Computing Advanced Networking Architectures Dependable, Reliable and Autonomic Computing Embedded Smart Agents Context awareness, social sensing and inference Multi modal interaction design Ergonomics and product prototyping Intelligent and self-organizing transportation networks & services Healthcare Systems Virtual Humans & Virtual Worlds Wearables sensors and actuators
期刊最新文献
Predicting the unconfined compressive strength of stabilized soil using random forest coupled with meta-heuristic algorithms Expressive sign language system for deaf kids with MPEG-4 approach of virtual human character MEDCO: an efficient protocol for data compression in wireless body sensor network A multi-objective gene selection for cancer diagnosis using particle swarm optimization and mutual information Partial policy hidden medical data access control method based on CP-ABE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1