行走式水稻钵苗插秧机的设计与测试

IF 2.1 4区 工程技术 Advances in Mechanical Engineering Pub Date : 2024-03-25 DOI:10.1177/16878132241237710
Maile Zhou, Guibin Wang, Yan Zhang, Jiajia Yang, Zhaoxiang Wei, Hao Sun, Jianjun Yin
{"title":"行走式水稻钵苗插秧机的设计与测试","authors":"Maile Zhou, Guibin Wang, Yan Zhang, Jiajia Yang, Zhaoxiang Wei, Hao Sun, Jianjun Yin","doi":"10.1177/16878132241237710","DOIUrl":null,"url":null,"abstract":"At present, rice potted seedling transplanting machine is mostly suitable for high-speed, large seedlings and large plant distance rice transplanting. In order to adapt to the transplanting of different types of rice potted seedlings, this study carried out theoretical research and institutional design for transplanting rice potted seedlings suitable for small seedlings and small plant spacing. A 2R open-chain rice potted seedling transplanting mechanism with two non-circular gears meshing to achieve the ideal transplanting posture was developed, and an optimization software for potted seedling transplanting was developed by establishing the kinematic model of the transplanting mechanism, which simulated the motion trajectory and attitude of the transplanting arm during the transplanting process. Through the optimization of the optimization design software parameters, a set of parameters that meet the requirements of transplanting rice potted seedlings in the rear insert rice potted are obtained, a transplanting mechanism suitable for walking rice potted seedling transplanting machine is designed and developed, and the experiments of rice potted seedling picking, conveying and planting are completed. The success rate of the designed walk-type rice potted seedling transplanting mechanism on the bench was 96.7%, and the qualification rate of the whole machine transplanting test was 89.1%.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"26 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and test of walk-type rice potted seedling transplanting machine\",\"authors\":\"Maile Zhou, Guibin Wang, Yan Zhang, Jiajia Yang, Zhaoxiang Wei, Hao Sun, Jianjun Yin\",\"doi\":\"10.1177/16878132241237710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, rice potted seedling transplanting machine is mostly suitable for high-speed, large seedlings and large plant distance rice transplanting. In order to adapt to the transplanting of different types of rice potted seedlings, this study carried out theoretical research and institutional design for transplanting rice potted seedlings suitable for small seedlings and small plant spacing. A 2R open-chain rice potted seedling transplanting mechanism with two non-circular gears meshing to achieve the ideal transplanting posture was developed, and an optimization software for potted seedling transplanting was developed by establishing the kinematic model of the transplanting mechanism, which simulated the motion trajectory and attitude of the transplanting arm during the transplanting process. Through the optimization of the optimization design software parameters, a set of parameters that meet the requirements of transplanting rice potted seedlings in the rear insert rice potted are obtained, a transplanting mechanism suitable for walking rice potted seedling transplanting machine is designed and developed, and the experiments of rice potted seedling picking, conveying and planting are completed. The success rate of the designed walk-type rice potted seedling transplanting mechanism on the bench was 96.7%, and the qualification rate of the whole machine transplanting test was 89.1%.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241237710\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241237710","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,水稻钵苗移栽机多适用于高速、大秧苗、大株距水稻移栽。为适应不同类型水稻钵苗的移栽,本研究对适合小苗、小株距的水稻钵苗移栽进行了理论研究和机构设计。通过建立插秧机构的运动学模型,模拟插秧过程中插秧臂的运动轨迹和姿态,开发了一种由两个非圆齿轮啮合实现理想插秧姿态的 2R 开链水稻钵苗插秧机构,并开发了钵苗插秧优化软件。通过对优化设计软件参数的优化,得到了一组符合后插秧钵苗移栽要求的参数,设计开发了适合步行式水稻钵苗移栽机的移栽机构,并完成了水稻钵苗的取秧、输送和栽插实验。所设计的行走式水稻钵苗移栽机构台架试验成功率为 96.7%,整机移栽试验合格率为 89.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and test of walk-type rice potted seedling transplanting machine
At present, rice potted seedling transplanting machine is mostly suitable for high-speed, large seedlings and large plant distance rice transplanting. In order to adapt to the transplanting of different types of rice potted seedlings, this study carried out theoretical research and institutional design for transplanting rice potted seedlings suitable for small seedlings and small plant spacing. A 2R open-chain rice potted seedling transplanting mechanism with two non-circular gears meshing to achieve the ideal transplanting posture was developed, and an optimization software for potted seedling transplanting was developed by establishing the kinematic model of the transplanting mechanism, which simulated the motion trajectory and attitude of the transplanting arm during the transplanting process. Through the optimization of the optimization design software parameters, a set of parameters that meet the requirements of transplanting rice potted seedlings in the rear insert rice potted are obtained, a transplanting mechanism suitable for walking rice potted seedling transplanting machine is designed and developed, and the experiments of rice potted seedling picking, conveying and planting are completed. The success rate of the designed walk-type rice potted seedling transplanting mechanism on the bench was 96.7%, and the qualification rate of the whole machine transplanting test was 89.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
Influence of urea solution condition on NOx reduction in marine diesel engines Characteristics of deploying longitudinal folding wings with compound actuation Research on the service life of bearings in the gearbox of rolling mill transmission system under non-steady lubrication state Research and application of a coupled wheel-track off-road robot based on separate track structure Research on energy consumption evaluation and energy-saving design of cranes in service based on structure-mechanism coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1