在使用两种可选柔性膜模型对砂和压载物的三轴试验进行 DEM 模拟时,对同时考虑曲率和拉力的膜校正进行研究

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-03-25 DOI:10.1007/s10035-024-01419-1
Mathias Tolomeo, Glenn R. McDowell
{"title":"在使用两种可选柔性膜模型对砂和压载物的三轴试验进行 DEM 模拟时,对同时考虑曲率和拉力的膜校正进行研究","authors":"Mathias Tolomeo,&nbsp;Glenn R. McDowell","doi":"10.1007/s10035-024-01419-1","DOIUrl":null,"url":null,"abstract":"<div><p>In DEM simulations of triaxial tests, modelling a flexible lateral membrane is crucial and challenging. It is essential for the correct application of a uniform lateral pressure and for an accurate measurement of sample volume. Here, we introduce a membrane made of triangular facets, and model it as a continuum; we then compare this approach with a well-established method that uses a layer of bonded spheres. With either method, it is also possible to assess the additional stress applied by the membrane as it deforms, i.e. the difference between the stress applied at the boundary and the actual stress within the sample. It is shown that this difference has two origins: the tension developed in the membrane, as it deforms; and the curvature of the membrane, since this causes a vertical component of the confining pressure which can be significant. These findings may be used to inform and improve the membrane correction commonly used in experiments, where similar effects occur.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-024-01419-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A study of membrane correction accounting for both curvature and tension in DEM simulations of triaxial tests of sand and ballast with two alternative flexible membrane models\",\"authors\":\"Mathias Tolomeo,&nbsp;Glenn R. McDowell\",\"doi\":\"10.1007/s10035-024-01419-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In DEM simulations of triaxial tests, modelling a flexible lateral membrane is crucial and challenging. It is essential for the correct application of a uniform lateral pressure and for an accurate measurement of sample volume. Here, we introduce a membrane made of triangular facets, and model it as a continuum; we then compare this approach with a well-established method that uses a layer of bonded spheres. With either method, it is also possible to assess the additional stress applied by the membrane as it deforms, i.e. the difference between the stress applied at the boundary and the actual stress within the sample. It is shown that this difference has two origins: the tension developed in the membrane, as it deforms; and the curvature of the membrane, since this causes a vertical component of the confining pressure which can be significant. These findings may be used to inform and improve the membrane correction commonly used in experiments, where similar effects occur.</p><h3>Graphic abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-024-01419-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01419-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01419-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在三轴试验的 DEM 模拟中,对柔性侧膜进行建模至关重要,也极具挑战性。它对于正确施加均匀侧压力和精确测量样品体积至关重要。在这里,我们引入了一种由三角形切面组成的薄膜,并将其作为连续体建模;然后,我们将这种方法与一种使用粘合球层的成熟方法进行比较。无论采用哪种方法,都可以评估膜在变形时施加的附加应力,即施加在边界上的应力与样品内部实际应力之间的差异。结果表明,这种差异有两个原因:一是膜在变形时产生的张力;二是膜的弧度,因为这会导致可能很大的约束压力垂直分量。这些发现可用于指导和改进实验中常用的膜校正,因为在实验中会出现类似的效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of membrane correction accounting for both curvature and tension in DEM simulations of triaxial tests of sand and ballast with two alternative flexible membrane models

In DEM simulations of triaxial tests, modelling a flexible lateral membrane is crucial and challenging. It is essential for the correct application of a uniform lateral pressure and for an accurate measurement of sample volume. Here, we introduce a membrane made of triangular facets, and model it as a continuum; we then compare this approach with a well-established method that uses a layer of bonded spheres. With either method, it is also possible to assess the additional stress applied by the membrane as it deforms, i.e. the difference between the stress applied at the boundary and the actual stress within the sample. It is shown that this difference has two origins: the tension developed in the membrane, as it deforms; and the curvature of the membrane, since this causes a vertical component of the confining pressure which can be significant. These findings may be used to inform and improve the membrane correction commonly used in experiments, where similar effects occur.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Reducing segregation in vibrated binary-sized granular mixtures by excessive small particle introduction Thermal conductivity and shrinkage characteristics of bentonite-fly ash and bentonite-sand backfill material Experimental studies on fluctuation properties of dust, turbulence and electric field during floating dust weather in Lanzhou Prediction of liquid bridge rupture between two plates combining artificial neural network with grey wolf optimization algorithm Construction of granular aggregates with different porosity, shape, and size distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1