基于核的局部匹配网络用于视频对象分割

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Vision and Applications Pub Date : 2024-03-25 DOI:10.1007/s00138-024-01524-4
Guoqiang Wang, Lan Li, Min Zhu, Rui Zhao, Xiang Zhang
{"title":"基于核的局部匹配网络用于视频对象分割","authors":"Guoqiang Wang, Lan Li, Min Zhu, Rui Zhao, Xiang Zhang","doi":"10.1007/s00138-024-01524-4","DOIUrl":null,"url":null,"abstract":"<p>Recently, the methods based on space-time memory network have achieved advanced performance in semi-supervised video object segmentation, which has attracted wide attention. However, this kind of methods still have a fatal limitation. It has the interference problem of similar objects caused by the way of non-local matching, which seriously limits the performance of video object segmentation. To solve this problem, we propose a Kernel-guided Attention Matching Network (KAMNet) by the use of local matching instead of non-local matching. At first, KAMNet uses spatio-temporal attention mechanism to enhance the model’s discrimination between foreground objects and background areas. Then KAMNet utilizes gaussian kernel to guide the matching between the current frame and the reference set. Because the gaussian kernel decays away from the center, it can limit the matching to the central region, thus achieving local matching. Our KAMNet gets speed-accuracy trade-off on benchmark datasets DAVIS 2016 (<span>\\( \\mathcal {J \\&amp; F}\\)</span> of 87.6%) and DAVIS 2017 (<span>\\( \\mathcal {J \\&amp; F}\\)</span> of 76.0%) with 0.12 second per frame.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"46 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel based local matching network for video object segmentation\",\"authors\":\"Guoqiang Wang, Lan Li, Min Zhu, Rui Zhao, Xiang Zhang\",\"doi\":\"10.1007/s00138-024-01524-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, the methods based on space-time memory network have achieved advanced performance in semi-supervised video object segmentation, which has attracted wide attention. However, this kind of methods still have a fatal limitation. It has the interference problem of similar objects caused by the way of non-local matching, which seriously limits the performance of video object segmentation. To solve this problem, we propose a Kernel-guided Attention Matching Network (KAMNet) by the use of local matching instead of non-local matching. At first, KAMNet uses spatio-temporal attention mechanism to enhance the model’s discrimination between foreground objects and background areas. Then KAMNet utilizes gaussian kernel to guide the matching between the current frame and the reference set. Because the gaussian kernel decays away from the center, it can limit the matching to the central region, thus achieving local matching. Our KAMNet gets speed-accuracy trade-off on benchmark datasets DAVIS 2016 (<span>\\\\( \\\\mathcal {J \\\\&amp; F}\\\\)</span> of 87.6%) and DAVIS 2017 (<span>\\\\( \\\\mathcal {J \\\\&amp; F}\\\\)</span> of 76.0%) with 0.12 second per frame.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01524-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01524-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,基于时空记忆网络的方法在半监督视频对象分割方面取得了先进的性能,引起了广泛关注。但是,这种方法仍然存在致命的局限性。它存在非局部匹配方式导致的相似对象干扰问题,严重限制了视频对象分割的性能。为了解决这个问题,我们提出了一种利用局部匹配代替非局部匹配的内核引导注意力匹配网络(KAMNet)。首先,KAMNet 利用时空注意力机制来增强模型对前景物体和背景区域的辨别能力。然后,KAMNet 利用高斯核引导当前帧与参考集之间的匹配。由于高斯核从中心开始衰减,它可以将匹配限制在中心区域,从而实现局部匹配。我们的 KAMNet 在基准数据集 DAVIS 2016(87.6%)和 DAVIS 2017(76.0%)上实现了速度与精度的权衡,每帧耗时 0.12 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel based local matching network for video object segmentation

Recently, the methods based on space-time memory network have achieved advanced performance in semi-supervised video object segmentation, which has attracted wide attention. However, this kind of methods still have a fatal limitation. It has the interference problem of similar objects caused by the way of non-local matching, which seriously limits the performance of video object segmentation. To solve this problem, we propose a Kernel-guided Attention Matching Network (KAMNet) by the use of local matching instead of non-local matching. At first, KAMNet uses spatio-temporal attention mechanism to enhance the model’s discrimination between foreground objects and background areas. Then KAMNet utilizes gaussian kernel to guide the matching between the current frame and the reference set. Because the gaussian kernel decays away from the center, it can limit the matching to the central region, thus achieving local matching. Our KAMNet gets speed-accuracy trade-off on benchmark datasets DAVIS 2016 (\( \mathcal {J \& F}\) of 87.6%) and DAVIS 2017 (\( \mathcal {J \& F}\) of 76.0%) with 0.12 second per frame.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
期刊最新文献
A novel key point based ROI segmentation and image captioning using guidance information Specular Surface Detection with Deep Static Specular Flow and Highlight Removing cloud shadows from ground-based solar imagery Underwater image object detection based on multi-scale feature fusion Object Recognition Consistency in Regression for Active Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1