Siti Aiman Husna Mohd Najib, Juliana Jalaludin, Nur Azalina Suzianti Feisal, Tashnia Faruk, Md Firoz Khan
{"title":"室内空气污染物与日托中心儿童呼吸系统健康的相互作用","authors":"Siti Aiman Husna Mohd Najib, Juliana Jalaludin, Nur Azalina Suzianti Feisal, Tashnia Faruk, Md Firoz Khan","doi":"10.1007/s11869-024-01536-z","DOIUrl":null,"url":null,"abstract":"<div><p>Apart from homes, daycare centers (DCCs) serve as essential indoor environments for children. The objective of this study was to investigate the correlation between IAQ and respiratory health implications in children and to identify patterns in IAQ using chemometric analysis. A total of 100 children aged 4 to 6 from 5 urban DCCs in Petaling Jaya, Selangor, were included in the study. The selected IAQ variables comprised temperature, humidity, air velocity, particulate matter, carbon dioxide (CO2) levels, airborne bacteria, and fungi. Reported respiratory health symptoms were collected along with sociodemographic and exposure history. There was a significant difference in the median concentration of PM<sub>10</sub>, PM<sub>2.5</sub>, temperature, and relative humidity (<i>p</i> = 0.035; <i>p</i> = 0.008; <i>p</i> < 0.001; <i>p</i> < 0.001) among DCCs. DCC B recorded the highest concentration of PM<sub>10</sub>, PM<sub>2.5</sub>, airborne fungi, and temperature which exceeded the standard guidelines. The prevalence of cough (χ2<sup>2</sup> = 12.810, <i>p</i> = 0.012), running nose (χ2<sup>2</sup> = 11.130, <i>p</i> = 0.013), and blocked nose (χ2<sup>2</sup> = 11.097, <i>p</i> = 0.025) were significantly higher among DCCs. Statistical results showed that there was a significant association between cough and running nose with high concentrations of PM<sub>10</sub> and PM<sub>2.5</sub>. The chemometric analysis of HCA showed that DCC C was found to have the highest dissimilarity in IAQ pollutants. PCA identified that PM<sub>2.5</sub>, PM<sub>10,</sub> airborne fungi, air velocity, and temperature have positive coefficients, accounting for 92.3% of DCCs located on the roadway and ongoing construction. The findings highlight the importance of maintaining good IAQ in DCCs to promote children's respiratory health and develop interventions and policies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 8","pages":"1677 - 1688"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of indoor air contaminants and respiratory health among children in the daycare centers\",\"authors\":\"Siti Aiman Husna Mohd Najib, Juliana Jalaludin, Nur Azalina Suzianti Feisal, Tashnia Faruk, Md Firoz Khan\",\"doi\":\"10.1007/s11869-024-01536-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Apart from homes, daycare centers (DCCs) serve as essential indoor environments for children. The objective of this study was to investigate the correlation between IAQ and respiratory health implications in children and to identify patterns in IAQ using chemometric analysis. A total of 100 children aged 4 to 6 from 5 urban DCCs in Petaling Jaya, Selangor, were included in the study. The selected IAQ variables comprised temperature, humidity, air velocity, particulate matter, carbon dioxide (CO2) levels, airborne bacteria, and fungi. Reported respiratory health symptoms were collected along with sociodemographic and exposure history. There was a significant difference in the median concentration of PM<sub>10</sub>, PM<sub>2.5</sub>, temperature, and relative humidity (<i>p</i> = 0.035; <i>p</i> = 0.008; <i>p</i> < 0.001; <i>p</i> < 0.001) among DCCs. DCC B recorded the highest concentration of PM<sub>10</sub>, PM<sub>2.5</sub>, airborne fungi, and temperature which exceeded the standard guidelines. The prevalence of cough (χ2<sup>2</sup> = 12.810, <i>p</i> = 0.012), running nose (χ2<sup>2</sup> = 11.130, <i>p</i> = 0.013), and blocked nose (χ2<sup>2</sup> = 11.097, <i>p</i> = 0.025) were significantly higher among DCCs. Statistical results showed that there was a significant association between cough and running nose with high concentrations of PM<sub>10</sub> and PM<sub>2.5</sub>. The chemometric analysis of HCA showed that DCC C was found to have the highest dissimilarity in IAQ pollutants. PCA identified that PM<sub>2.5</sub>, PM<sub>10,</sub> airborne fungi, air velocity, and temperature have positive coefficients, accounting for 92.3% of DCCs located on the roadway and ongoing construction. The findings highlight the importance of maintaining good IAQ in DCCs to promote children's respiratory health and develop interventions and policies.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 8\",\"pages\":\"1677 - 1688\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01536-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01536-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Interaction of indoor air contaminants and respiratory health among children in the daycare centers
Apart from homes, daycare centers (DCCs) serve as essential indoor environments for children. The objective of this study was to investigate the correlation between IAQ and respiratory health implications in children and to identify patterns in IAQ using chemometric analysis. A total of 100 children aged 4 to 6 from 5 urban DCCs in Petaling Jaya, Selangor, were included in the study. The selected IAQ variables comprised temperature, humidity, air velocity, particulate matter, carbon dioxide (CO2) levels, airborne bacteria, and fungi. Reported respiratory health symptoms were collected along with sociodemographic and exposure history. There was a significant difference in the median concentration of PM10, PM2.5, temperature, and relative humidity (p = 0.035; p = 0.008; p < 0.001; p < 0.001) among DCCs. DCC B recorded the highest concentration of PM10, PM2.5, airborne fungi, and temperature which exceeded the standard guidelines. The prevalence of cough (χ22 = 12.810, p = 0.012), running nose (χ22 = 11.130, p = 0.013), and blocked nose (χ22 = 11.097, p = 0.025) were significantly higher among DCCs. Statistical results showed that there was a significant association between cough and running nose with high concentrations of PM10 and PM2.5. The chemometric analysis of HCA showed that DCC C was found to have the highest dissimilarity in IAQ pollutants. PCA identified that PM2.5, PM10, airborne fungi, air velocity, and temperature have positive coefficients, accounting for 92.3% of DCCs located on the roadway and ongoing construction. The findings highlight the importance of maintaining good IAQ in DCCs to promote children's respiratory health and develop interventions and policies.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.