{"title":"微妙的平衡:大麦芒的发育和产量的转录控制。","authors":"Alisdair R Fernie, Mustafa Bulut","doi":"10.1016/j.tplants.2024.03.015","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent study, Zhang et al. identified that MADS1-regulated lemma and awn development can positively regulate barley yield. This finding, alongside the demonstration that the function of MADS1 is conserved in wheat, suggests it is an important target for the improvement of Triticeae crops.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A delicate balance: transcriptional control of awn development and yield in barley.\",\"authors\":\"Alisdair R Fernie, Mustafa Bulut\",\"doi\":\"10.1016/j.tplants.2024.03.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent study, Zhang et al. identified that MADS1-regulated lemma and awn development can positively regulate barley yield. This finding, alongside the demonstration that the function of MADS1 is conserved in wheat, suggests it is an important target for the improvement of Triticeae crops.</p>\",\"PeriodicalId\":23264,\"journal\":{\"name\":\"Trends in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tplants.2024.03.015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.03.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A delicate balance: transcriptional control of awn development and yield in barley.
In a recent study, Zhang et al. identified that MADS1-regulated lemma and awn development can positively regulate barley yield. This finding, alongside the demonstration that the function of MADS1 is conserved in wheat, suggests it is an important target for the improvement of Triticeae crops.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.