{"title":"全氟和多氟烷基物质高级还原的先进实验和计算方法","authors":"Sohag Biswas, Xian Wang, Bryan M Wong","doi":"10.1016/j.coche.2024.101017","DOIUrl":null,"url":null,"abstract":"<div><p>The elimination of per- and polyfluoroalkyl substances (PFAS) in water continues to garner significant attention due to their enduring presence in the environment and associated health concerns. The emergence of advanced reduction processes (ARPs) holds significant promise in reducing persistent PFAS in water, primarily due to its ability to produce short-lived yet highly reductive hydrated electrons. This concise review offers insights into the latest developments in ARP-based PFAS degradation, encompassing both experimental and theoretical investigations conducted within the last 2–5 years. We conclude with an outlook on potential research avenues in this dynamic field and suggest future experimental and computational strategies to enhance ARP capabilities.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"44 ","pages":"Article 101017"},"PeriodicalIF":8.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339824000182/pdfft?md5=a631f83c4abe357d3d409a490885b895&pid=1-s2.0-S2211339824000182-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advanced experimental and computational approaches for advanced reduction of per- and polyfluoroalkyl substances\",\"authors\":\"Sohag Biswas, Xian Wang, Bryan M Wong\",\"doi\":\"10.1016/j.coche.2024.101017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The elimination of per- and polyfluoroalkyl substances (PFAS) in water continues to garner significant attention due to their enduring presence in the environment and associated health concerns. The emergence of advanced reduction processes (ARPs) holds significant promise in reducing persistent PFAS in water, primarily due to its ability to produce short-lived yet highly reductive hydrated electrons. This concise review offers insights into the latest developments in ARP-based PFAS degradation, encompassing both experimental and theoretical investigations conducted within the last 2–5 years. We conclude with an outlook on potential research avenues in this dynamic field and suggest future experimental and computational strategies to enhance ARP capabilities.</p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"44 \",\"pages\":\"Article 101017\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000182/pdfft?md5=a631f83c4abe357d3d409a490885b895&pid=1-s2.0-S2211339824000182-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000182\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000182","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Advanced experimental and computational approaches for advanced reduction of per- and polyfluoroalkyl substances
The elimination of per- and polyfluoroalkyl substances (PFAS) in water continues to garner significant attention due to their enduring presence in the environment and associated health concerns. The emergence of advanced reduction processes (ARPs) holds significant promise in reducing persistent PFAS in water, primarily due to its ability to produce short-lived yet highly reductive hydrated electrons. This concise review offers insights into the latest developments in ARP-based PFAS degradation, encompassing both experimental and theoretical investigations conducted within the last 2–5 years. We conclude with an outlook on potential research avenues in this dynamic field and suggest future experimental and computational strategies to enhance ARP capabilities.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.