通过深度兴奋抑制因子强化学习发现专家级空战知识

IF 7.2 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Intelligent Systems and Technology Pub Date : 2024-03-27 DOI:10.1145/3653979
Haiyin Piao, Shengqi Yang, Hechang Chen, Junnan Li, Jin Yu, Xuanqi Peng, Xin Yang, Zhen Yang, Zhixiao Sun, Yi Chang
{"title":"通过深度兴奋抑制因子强化学习发现专家级空战知识","authors":"Haiyin Piao, Shengqi Yang, Hechang Chen, Junnan Li, Jin Yu, Xuanqi Peng, Xin Yang, Zhen Yang, Zhixiao Sun, Yi Chang","doi":"10.1145/3653979","DOIUrl":null,"url":null,"abstract":"<p>Artificial Intelligence (AI) has achieved a wide range of successes in autonomous air combat decision-making recently. Previous research demonstrated that AI-enabled air combat approaches could even acquire beyond human-level capabilities. However, there remains a lack of evidence regarding two major difficulties. First, the existing methods with fixed decision intervals are mostly devoted to solving what to act, but merely pay attention to when to act, which occasionally misses optimal decision opportunities. Second, the method of an expert-crafted finite maneuver library leads to a lack of tactics diversity, which is vulnerable to an opponent equipped with new tactics. In view of this, we propose a novel Deep Reinforcement Learning (DRL) and prior knowledge hybrid autonomous air combat tactics discovering algorithm, namely deep <b>E</b>xcitatory-i<b>N</b>hibitory f<b>ACT</b>or<b>I</b>zed maneu<b>VE</b>r (<b>ENACTIVE</b>) learning. The algorithm consists of two key modules, i.e., ENHANCE and FACTIVE. Specifically, ENHANCE learns to adjust the air combat decision-making intervals and appropriately seize key opportunities. FACTIVE factorizes maneuvers and then jointly optimizes them with significant tactics diversity increments. Extensive experimental results reveal that the proposed method outperforms state-of-the-art algorithms with a 62% winning rate, and further obtains a margin of a 2.85-fold increase in terms of global tactic space coverage. It also demonstrates that a variety of discovered air combat tactics that are comparable to human experts’ knowledge.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"4 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Expert-Level Air Combat Knowledge via Deep Excitatory-Inhibitory Factorized Reinforcement Learning\",\"authors\":\"Haiyin Piao, Shengqi Yang, Hechang Chen, Junnan Li, Jin Yu, Xuanqi Peng, Xin Yang, Zhen Yang, Zhixiao Sun, Yi Chang\",\"doi\":\"10.1145/3653979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial Intelligence (AI) has achieved a wide range of successes in autonomous air combat decision-making recently. Previous research demonstrated that AI-enabled air combat approaches could even acquire beyond human-level capabilities. However, there remains a lack of evidence regarding two major difficulties. First, the existing methods with fixed decision intervals are mostly devoted to solving what to act, but merely pay attention to when to act, which occasionally misses optimal decision opportunities. Second, the method of an expert-crafted finite maneuver library leads to a lack of tactics diversity, which is vulnerable to an opponent equipped with new tactics. In view of this, we propose a novel Deep Reinforcement Learning (DRL) and prior knowledge hybrid autonomous air combat tactics discovering algorithm, namely deep <b>E</b>xcitatory-i<b>N</b>hibitory f<b>ACT</b>or<b>I</b>zed maneu<b>VE</b>r (<b>ENACTIVE</b>) learning. The algorithm consists of two key modules, i.e., ENHANCE and FACTIVE. Specifically, ENHANCE learns to adjust the air combat decision-making intervals and appropriately seize key opportunities. FACTIVE factorizes maneuvers and then jointly optimizes them with significant tactics diversity increments. Extensive experimental results reveal that the proposed method outperforms state-of-the-art algorithms with a 62% winning rate, and further obtains a margin of a 2.85-fold increase in terms of global tactic space coverage. It also demonstrates that a variety of discovered air combat tactics that are comparable to human experts’ knowledge.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653979\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653979","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,人工智能(AI)在自主空战决策方面取得了广泛的成功。此前的研究表明,人工智能支持的空战方法甚至可以获得超越人类水平的能力。然而,在两个主要困难方面仍然缺乏证据。首先,现有的固定决策间隔方法大多致力于解决 "行动什么 "的问题,而仅仅关注 "何时行动",偶尔会错过最佳决策机会。其次,由专家创建有限演习库的方法导致战术缺乏多样性,很容易受到拥有新战术的对手的攻击。有鉴于此,我们提出了一种新颖的深度强化学习(DRL)和先验知识混合型自主空战战术发现算法,即深度激励-抑制性机动学习(ENACTIVE)。该算法由两个关键模块组成,即 ENHANCE 和 FACTIVE。具体来说,ENHANCE 学习调整空战决策间隔,适当抓住关键机会。FACTIVE 对机动进行因子化,然后通过显著的战术多样性增量对其进行联合优化。广泛的实验结果表明,所提出的方法以 62% 的胜率超越了最先进的算法,并进一步在全球战术空间覆盖率方面获得了 2.85 倍的增长。实验还证明,所发现的各种空战战术可与人类专家的知识相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Expert-Level Air Combat Knowledge via Deep Excitatory-Inhibitory Factorized Reinforcement Learning

Artificial Intelligence (AI) has achieved a wide range of successes in autonomous air combat decision-making recently. Previous research demonstrated that AI-enabled air combat approaches could even acquire beyond human-level capabilities. However, there remains a lack of evidence regarding two major difficulties. First, the existing methods with fixed decision intervals are mostly devoted to solving what to act, but merely pay attention to when to act, which occasionally misses optimal decision opportunities. Second, the method of an expert-crafted finite maneuver library leads to a lack of tactics diversity, which is vulnerable to an opponent equipped with new tactics. In view of this, we propose a novel Deep Reinforcement Learning (DRL) and prior knowledge hybrid autonomous air combat tactics discovering algorithm, namely deep Excitatory-iNhibitory fACTorIzed maneuVEr (ENACTIVE) learning. The algorithm consists of two key modules, i.e., ENHANCE and FACTIVE. Specifically, ENHANCE learns to adjust the air combat decision-making intervals and appropriately seize key opportunities. FACTIVE factorizes maneuvers and then jointly optimizes them with significant tactics diversity increments. Extensive experimental results reveal that the proposed method outperforms state-of-the-art algorithms with a 62% winning rate, and further obtains a margin of a 2.85-fold increase in terms of global tactic space coverage. It also demonstrates that a variety of discovered air combat tactics that are comparable to human experts’ knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.30
自引率
2.00%
发文量
131
期刊介绍: ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.
期刊最新文献
Aspect-enhanced Explainable Recommendation with Multi-modal Contrastive Learning The Social Cognition Ability Evaluation of LLMs: A Dynamic Gamified Assessment and Hierarchical Social Learning Measurement Approach Explaining Neural News Recommendation with Attributions onto Reading Histories Misinformation Resilient Search Rankings with Webgraph-based Interventions Privacy-Preserving and Diversity-Aware Trust-based Team Formation in Online Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1