Anas M. Al-Oraiqat, Oleksandr Drieiev, Hanna Drieieva, Yelyzaveta Meleshko, Hazim AlRawashdeh, Karim A. Al-Oraiqat, Yassin M. Y. Hasan, Noor Maricar, Sheroz Khan
{"title":"利用神经网络提取红外图像的时空人群特征","authors":"Anas M. Al-Oraiqat, Oleksandr Drieiev, Hanna Drieieva, Yelyzaveta Meleshko, Hazim AlRawashdeh, Karim A. Al-Oraiqat, Yassin M. Y. Hasan, Noor Maricar, Sheroz Khan","doi":"10.1007/s12652-024-04771-5","DOIUrl":null,"url":null,"abstract":"<p>Crowds can lead up to severe disasterous consequences resulting in fatalities. Videos obtained through public cameras or captured by drones flying overhead can be processed with artificial intelligence-based crowd analysis systems. Being a hot area of research over the past few years, the goal is not only to identify the presence of crowds but also to predict the probability of crowd-formation in order to issue timely warnings and preventive measures. Such systems will significantly reduce the probablity of the potential disasters. Developing effective systems is a challenging task, especially due to factors such as naturally occuring diverse conditions, variations in people or background pixel areas, noise, behaviors of individuals, relative amounts/distributions/directions of crowd movements, and crowd building reasons. This paper proposes an infrared video processing system based on U-Net convolutional neural network for crowd monitoring in infrared video frames to help estimate the people crowd with normal or abnormal trends. The proposed U-Net architecture aims to efficiently extract crowd features, achieve sufficient people marking-up accuracy, competitively with optimal network configurations in terms of the depth and number of filters to consequently minimise the number of coefficients. For further faster processing, hardware resources/implementation area savings, and lower power, the optimized network coefficients measured are represented in Canonic-Signed Digit with minimal number of nonzero (<b>± 1</b>) digits, minimizing the number of underlying shift-add/subtract operations of all multipliers. The achieved significantly reduced computational cost makes the proposed U-Net effectively suitable for resource-constrained and low power applications.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal crowds features extraction of infrared images using neural network\",\"authors\":\"Anas M. Al-Oraiqat, Oleksandr Drieiev, Hanna Drieieva, Yelyzaveta Meleshko, Hazim AlRawashdeh, Karim A. Al-Oraiqat, Yassin M. Y. Hasan, Noor Maricar, Sheroz Khan\",\"doi\":\"10.1007/s12652-024-04771-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crowds can lead up to severe disasterous consequences resulting in fatalities. Videos obtained through public cameras or captured by drones flying overhead can be processed with artificial intelligence-based crowd analysis systems. Being a hot area of research over the past few years, the goal is not only to identify the presence of crowds but also to predict the probability of crowd-formation in order to issue timely warnings and preventive measures. Such systems will significantly reduce the probablity of the potential disasters. Developing effective systems is a challenging task, especially due to factors such as naturally occuring diverse conditions, variations in people or background pixel areas, noise, behaviors of individuals, relative amounts/distributions/directions of crowd movements, and crowd building reasons. This paper proposes an infrared video processing system based on U-Net convolutional neural network for crowd monitoring in infrared video frames to help estimate the people crowd with normal or abnormal trends. The proposed U-Net architecture aims to efficiently extract crowd features, achieve sufficient people marking-up accuracy, competitively with optimal network configurations in terms of the depth and number of filters to consequently minimise the number of coefficients. For further faster processing, hardware resources/implementation area savings, and lower power, the optimized network coefficients measured are represented in Canonic-Signed Digit with minimal number of nonzero (<b>± 1</b>) digits, minimizing the number of underlying shift-add/subtract operations of all multipliers. The achieved significantly reduced computational cost makes the proposed U-Net effectively suitable for resource-constrained and low power applications.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04771-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04771-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Spatiotemporal crowds features extraction of infrared images using neural network
Crowds can lead up to severe disasterous consequences resulting in fatalities. Videos obtained through public cameras or captured by drones flying overhead can be processed with artificial intelligence-based crowd analysis systems. Being a hot area of research over the past few years, the goal is not only to identify the presence of crowds but also to predict the probability of crowd-formation in order to issue timely warnings and preventive measures. Such systems will significantly reduce the probablity of the potential disasters. Developing effective systems is a challenging task, especially due to factors such as naturally occuring diverse conditions, variations in people or background pixel areas, noise, behaviors of individuals, relative amounts/distributions/directions of crowd movements, and crowd building reasons. This paper proposes an infrared video processing system based on U-Net convolutional neural network for crowd monitoring in infrared video frames to help estimate the people crowd with normal or abnormal trends. The proposed U-Net architecture aims to efficiently extract crowd features, achieve sufficient people marking-up accuracy, competitively with optimal network configurations in terms of the depth and number of filters to consequently minimise the number of coefficients. For further faster processing, hardware resources/implementation area savings, and lower power, the optimized network coefficients measured are represented in Canonic-Signed Digit with minimal number of nonzero (± 1) digits, minimizing the number of underlying shift-add/subtract operations of all multipliers. The achieved significantly reduced computational cost makes the proposed U-Net effectively suitable for resource-constrained and low power applications.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators