扫描透射电子显微镜中的希尔伯特-差分相位对比应用。

Haruka Iga, Toshiki Shimizu, Hiroki Minoda
{"title":"扫描透射电子显微镜中的希尔伯特-差分相位对比应用。","authors":"Haruka Iga, Toshiki Shimizu, Hiroki Minoda","doi":"10.1093/jmicro/dfae015","DOIUrl":null,"url":null,"abstract":"<p><p>We report a novel class of scanning transmission electron microscopy with Hilbert-differential phase contrast (HDP-STEM) that displays nanostructures of thin samples in a topographical manner. A semicircular π-phase plate (PP) was used as an optical device for manipulating electron waves in HDP-STEM. This is the different design from the Zernike PP used in our previous phase plate STEM (P-STEM), but both must be placed in the front focal plane of the condenser lens. HDP-STEM images of multiwalled carbon nanotubes showed higher contrast than those obtained by conventional bright-field STEM. As the PP of the HDP-STEM is nonsymmetrical, several different images were obtained by changing the detection conditions. A two-dimensional electron detector was also used to remove the scattering contrast component in the same way as with the Zernike PP and obtain an image containing only (differential) phase contrast.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"414-421"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Hilbert-differential phase contrast to scanning transmission electron microscopy.\",\"authors\":\"Haruka Iga, Toshiki Shimizu, Hiroki Minoda\",\"doi\":\"10.1093/jmicro/dfae015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a novel class of scanning transmission electron microscopy with Hilbert-differential phase contrast (HDP-STEM) that displays nanostructures of thin samples in a topographical manner. A semicircular π-phase plate (PP) was used as an optical device for manipulating electron waves in HDP-STEM. This is the different design from the Zernike PP used in our previous phase plate STEM (P-STEM), but both must be placed in the front focal plane of the condenser lens. HDP-STEM images of multiwalled carbon nanotubes showed higher contrast than those obtained by conventional bright-field STEM. As the PP of the HDP-STEM is nonsymmetrical, several different images were obtained by changing the detection conditions. A two-dimensional electron detector was also used to remove the scattering contrast component in the same way as with the Zernike PP and obtain an image containing only (differential) phase contrast.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"414-421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfae015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一种新型希尔伯特差分相衬扫描透射电子显微镜(HDP-STEM),它能以地形方式显示薄样品的纳米结构。在 HDP-STEM 中,半圆形 π 相板(PP)被用作操纵电子波的光学设备。这种设计不同于我们之前在相板 STEM(P-STEM)中使用的 Zernike PP,但两者都必须置于聚光透镜的前焦平面。多壁碳纳米管的 HDP-STEM 图像显示出比传统明场 STEM 更高的对比度。由于 HDP-STEM 的 PP 是非对称的,因此可以通过改变检测条件获得几种不同的图像。此外,还使用了二维电子探测器,以与泽奈克PP相同的方式去除散射对比成分,获得仅包含(差分)相位对比的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Hilbert-differential phase contrast to scanning transmission electron microscopy.

We report a novel class of scanning transmission electron microscopy with Hilbert-differential phase contrast (HDP-STEM) that displays nanostructures of thin samples in a topographical manner. A semicircular π-phase plate (PP) was used as an optical device for manipulating electron waves in HDP-STEM. This is the different design from the Zernike PP used in our previous phase plate STEM (P-STEM), but both must be placed in the front focal plane of the condenser lens. HDP-STEM images of multiwalled carbon nanotubes showed higher contrast than those obtained by conventional bright-field STEM. As the PP of the HDP-STEM is nonsymmetrical, several different images were obtained by changing the detection conditions. A two-dimensional electron detector was also used to remove the scattering contrast component in the same way as with the Zernike PP and obtain an image containing only (differential) phase contrast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correction to: Low-dose measurement of electric potential distribution in organic light-emitting diode by phase-shifting electron holography with 3D tensor decomposition. Correction to: Structures of multisubunit membrane complexes with the CRYO ARM 200. Momentum-resolved EELS and CL study on 1D-plasmonic crystal prepared by FIB method. Bayesian inference of atomic column positions in scanning transmission electron microscopy images. Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1