{"title":"扫描透射电子显微镜中的希尔伯特-差分相位对比应用。","authors":"Haruka Iga, Toshiki Shimizu, Hiroki Minoda","doi":"10.1093/jmicro/dfae015","DOIUrl":null,"url":null,"abstract":"<p><p>We report a novel class of scanning transmission electron microscopy with Hilbert-differential phase contrast (HDP-STEM) that displays nanostructures of thin samples in a topographical manner. A semicircular π-phase plate (PP) was used as an optical device for manipulating electron waves in HDP-STEM. This is the different design from the Zernike PP used in our previous phase plate STEM (P-STEM), but both must be placed in the front focal plane of the condenser lens. HDP-STEM images of multiwalled carbon nanotubes showed higher contrast than those obtained by conventional bright-field STEM. As the PP of the HDP-STEM is nonsymmetrical, several different images were obtained by changing the detection conditions. A two-dimensional electron detector was also used to remove the scattering contrast component in the same way as with the Zernike PP and obtain an image containing only (differential) phase contrast.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"414-421"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Hilbert-differential phase contrast to scanning transmission electron microscopy.\",\"authors\":\"Haruka Iga, Toshiki Shimizu, Hiroki Minoda\",\"doi\":\"10.1093/jmicro/dfae015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a novel class of scanning transmission electron microscopy with Hilbert-differential phase contrast (HDP-STEM) that displays nanostructures of thin samples in a topographical manner. A semicircular π-phase plate (PP) was used as an optical device for manipulating electron waves in HDP-STEM. This is the different design from the Zernike PP used in our previous phase plate STEM (P-STEM), but both must be placed in the front focal plane of the condenser lens. HDP-STEM images of multiwalled carbon nanotubes showed higher contrast than those obtained by conventional bright-field STEM. As the PP of the HDP-STEM is nonsymmetrical, several different images were obtained by changing the detection conditions. A two-dimensional electron detector was also used to remove the scattering contrast component in the same way as with the Zernike PP and obtain an image containing only (differential) phase contrast.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"414-421\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfae015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Hilbert-differential phase contrast to scanning transmission electron microscopy.
We report a novel class of scanning transmission electron microscopy with Hilbert-differential phase contrast (HDP-STEM) that displays nanostructures of thin samples in a topographical manner. A semicircular π-phase plate (PP) was used as an optical device for manipulating electron waves in HDP-STEM. This is the different design from the Zernike PP used in our previous phase plate STEM (P-STEM), but both must be placed in the front focal plane of the condenser lens. HDP-STEM images of multiwalled carbon nanotubes showed higher contrast than those obtained by conventional bright-field STEM. As the PP of the HDP-STEM is nonsymmetrical, several different images were obtained by changing the detection conditions. A two-dimensional electron detector was also used to remove the scattering contrast component in the same way as with the Zernike PP and obtain an image containing only (differential) phase contrast.