用 N-甲基异噻唑啉酮对节杆菌肌氨酸氧化酶进行化学修饰可降低其对氧气的反应性。

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience, Biotechnology, and Biochemistry Pub Date : 2024-05-22 DOI:10.1093/bbb/zbae039
Fuka Toyama, Hironori Kimura, Yuqi Zhang, Yoshiaki Nishiya
{"title":"用 N-甲基异噻唑啉酮对节杆菌肌氨酸氧化酶进行化学修饰可降低其对氧气的反应性。","authors":"Fuka Toyama, Hironori Kimura, Yuqi Zhang, Yoshiaki Nishiya","doi":"10.1093/bbb/zbae039","DOIUrl":null,"url":null,"abstract":"<p><p>N-Methylisothiazolinone (MIT) is a thiol group modifier and antimicrobial agent. Arthrobacter sarcosine oxidase (SoxA), a diagnostic enzyme for assaying creatinine, loses its activity upon the addition of MIT, and its inactivation mechanism remains unclear. In this study, SoxA was chemically modified using MIT (mo-SoxA), and its structural and chemical properties were characterized. Spectral analysis data, oxygen consumption rates, and reactions were compared between intact SoxA and mo-SoxA. These demonstrate that the oxidative half-reaction toward oxygen is inhibited by MIT modification. The oxidase activity of mo-SoxA was approximately 2.1% of that of intact SoxA, and its dehydrogenase activity was approximately 4.2 times higher. The C-to-S mutants revealed that cooperative modification of 2 specific cysteine residues caused a drastic change in the enzyme reaction mode. Based on the modeled tertiary structures, the putative entrance for oxygen uptake is predicted to be blocked by the chemical modification of the 2 cysteine residues.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical modification of Arthrobacter sarcosine oxidase by N-methylisothiazolinone reduces reactivity toward oxygen.\",\"authors\":\"Fuka Toyama, Hironori Kimura, Yuqi Zhang, Yoshiaki Nishiya\",\"doi\":\"10.1093/bbb/zbae039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N-Methylisothiazolinone (MIT) is a thiol group modifier and antimicrobial agent. Arthrobacter sarcosine oxidase (SoxA), a diagnostic enzyme for assaying creatinine, loses its activity upon the addition of MIT, and its inactivation mechanism remains unclear. In this study, SoxA was chemically modified using MIT (mo-SoxA), and its structural and chemical properties were characterized. Spectral analysis data, oxygen consumption rates, and reactions were compared between intact SoxA and mo-SoxA. These demonstrate that the oxidative half-reaction toward oxygen is inhibited by MIT modification. The oxidase activity of mo-SoxA was approximately 2.1% of that of intact SoxA, and its dehydrogenase activity was approximately 4.2 times higher. The C-to-S mutants revealed that cooperative modification of 2 specific cysteine residues caused a drastic change in the enzyme reaction mode. Based on the modeled tertiary structures, the putative entrance for oxygen uptake is predicted to be blocked by the chemical modification of the 2 cysteine residues.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae039\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

N-甲基异噻唑啉酮(MIT)是一种硫醇基修饰剂和抗菌剂。节杆菌肌氨酸氧化酶(SoxA)是一种测定肌酐的诊断酶,加入 MIT 后会失去活性,其失活机制尚不清楚。本研究使用 MIT 对 SoxA 进行了化学修饰(mo-SoxA),并对其结构和化学特性进行了表征。比较了完整 SoxA 和 mo-SoxA 的光谱分析数据、耗氧量和反应。结果表明,MIT 修饰抑制了氧的氧化半反应。mo-SoxA 的氧化酶活性约为完整 SoxA 的 2.1%,其脱氢酶活性约为完整 SoxA 的 4.2 倍。C-to-S突变体显示,两个特定半胱氨酸残基的合作修饰导致酶的反应模式发生了急剧变化。根据模拟的三级结构,可以预测这两个半胱氨酸残基的化学修饰会阻断氧气吸收的入口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical modification of Arthrobacter sarcosine oxidase by N-methylisothiazolinone reduces reactivity toward oxygen.

N-Methylisothiazolinone (MIT) is a thiol group modifier and antimicrobial agent. Arthrobacter sarcosine oxidase (SoxA), a diagnostic enzyme for assaying creatinine, loses its activity upon the addition of MIT, and its inactivation mechanism remains unclear. In this study, SoxA was chemically modified using MIT (mo-SoxA), and its structural and chemical properties were characterized. Spectral analysis data, oxygen consumption rates, and reactions were compared between intact SoxA and mo-SoxA. These demonstrate that the oxidative half-reaction toward oxygen is inhibited by MIT modification. The oxidase activity of mo-SoxA was approximately 2.1% of that of intact SoxA, and its dehydrogenase activity was approximately 4.2 times higher. The C-to-S mutants revealed that cooperative modification of 2 specific cysteine residues caused a drastic change in the enzyme reaction mode. Based on the modeled tertiary structures, the putative entrance for oxygen uptake is predicted to be blocked by the chemical modification of the 2 cysteine residues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
期刊最新文献
Bile acids acting as a feeding signal and functional foods mimicking bile acid function. Epidermal growth factor induces the initiation of epithelial mesenchymal transition in high-density colorectal cancer cell culture. Anti-inflammatory effect of covalent PPARγ ligands that have a hybrid structure of GW9662 and a food-derived cinnamic acid derivative. Production and molecular weight variation of poly-γ-glutamic acid using a recombinant Bacillus subtilis with various Pgs-component ratios. Oleanane-type saponins from Lysimachia laxa Baudo and their antibacterial activities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1