量化体外炭疽杆菌的生长和 PA 的产生与衰变:一种数学建模方法。

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY NPJ Systems Biology and Applications Pub Date : 2024-03-29 DOI:10.1038/s41540-024-00357-1
Bevelynn Williams, Jamie Paterson, Helena J Rawsthorne-Manning, Polly-Anne Jeffrey, Joseph J Gillard, Grant Lythe, Thomas R Laws, Martín López-García
{"title":"量化体外炭疽杆菌的生长和 PA 的产生与衰变:一种数学建模方法。","authors":"Bevelynn Williams, Jamie Paterson, Helena J Rawsthorne-Manning, Polly-Anne Jeffrey, Joseph J Gillard, Grant Lythe, Thomas R Laws, Martín López-García","doi":"10.1038/s41540-024-00357-1","DOIUrl":null,"url":null,"abstract":"<p><p>Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980772/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying in vitro B. anthracis growth and PA production and decay: a mathematical modelling approach.\",\"authors\":\"Bevelynn Williams, Jamie Paterson, Helena J Rawsthorne-Manning, Polly-Anne Jeffrey, Joseph J Gillard, Grant Lythe, Thomas R Laws, Martín López-García\",\"doi\":\"10.1038/s41540-024-00357-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00357-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00357-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

保护性抗原(PA)是炭疽杆菌产生的一种蛋白质。它是炭疽毒素的一部分,也是美国和英国炭疽疫苗的主要免疫原。在本研究中,我们对英国炭疽疫苗生产中使用的炭疽杆菌 Sterne 株培养上清液中的 PA 进行了定量实验。然后,我们首次通过数学建模和贝叶斯统计技术对 PA 的产生和降解进行了量化,并利用了这一新的实验数据和另外两组独立发表的数据。我们用延迟微分方程(DDE)提出了一个数学模型,该模型可以解释所有三组数据的体外动态。由于我们在接种前没有对炭疽杆菌孢子进行热激活,因此在我们的实验中萌发的速度要慢得多,这使得我们可以校准与其他数据集相比的两个额外参数。我们的模型能够区分 PA 的自然衰变和细菌通过蛋白酶引发的衰变。在不同的独立数据集之间,大多数参数的估计值都具有很好的一致性。本文获得的炭疽杆菌 PA 生成和降解的定量特征将有助于在未来的炭疽感染机理模型中对毒素动态、宿主免疫反应和抗毒素治疗进行现实描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying in vitro B. anthracis growth and PA production and decay: a mathematical modelling approach.

Protective antigen (PA) is a protein produced by Bacillus anthracis. It forms part of the anthrax toxin and is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and degradation via mathematical modelling and Bayesian statistical techniques, making use of this new experimental data as well as two other independent published data sets. We propose a single mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to inoculation, germination occurred much slower in our experiments, allowing us to calibrate two additional parameters with respect to the other data sets. Our model is able to distinguish between natural PA decay and that triggered by bacteria via proteases. There is promising consistency between the different independent data sets for most of the parameter estimates. The quantitative characterisation of B. anthracis PA production and degradation obtained here will contribute towards the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-toxin treatments in future mechanistic models of anthrax infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
期刊最新文献
Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images. Network medicine informed multiomics integration identifies drug targets and repurposable medicines for Amyotrophic Lateral Sclerosis. Multi-bioinformatics revealed potential biomarkers and repurposed drugs for gastric adenocarcinoma-related gastric intestinal metaplasia. Multiscale, mechanistic model of Rheumatoid Arthritis to enable decision making in late stage drug development. An integrative network-based approach to identify driving gene communities in chronic obstructive pulmonary disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1