全氟和多氟烷基物质(PFAS)的电化学还原:可行吗?应用还原脱氟文献中的实验和量子力学观点

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Opinion in Chemical Engineering Pub Date : 2024-03-29 DOI:10.1016/j.coche.2024.101014
Jacob F King, Brian P Chaplin
{"title":"全氟和多氟烷基物质(PFAS)的电化学还原:可行吗?应用还原脱氟文献中的实验和量子力学观点","authors":"Jacob F King,&nbsp;Brian P Chaplin","doi":"10.1016/j.coche.2024.101014","DOIUrl":null,"url":null,"abstract":"<div><p>Remediation of per- and polyfluorinated alkyl substances (PFAS) in global water systems is a critical human and environmental health challenge facing society. PFAS consumption is associated with a litany of adverse health effects, and our knowledge of these dangers is still evolving. Current techniques to remove PFAS from water include adsorption to media (e.g. granular activated carbon, ion-exchange resin), nanofiltration, and reverse osmosis. However, these processes create a concentrated PFAS residual that requires further management. Destructive techniques are therefore needed to detoxify these residuals. Oxidative techniques have garnered the most attention (e.g. supercritical water oxidation, electrochemical oxidation) but are energy intensive and potentially form toxic by-products. As an alternative, several groups have researched advanced reduction processes that form aqueous electrons, but these processes are still chemical and energy intensive (e.g. ultraviolet/SO<sub>3</sub><sup>2</sup><sup>−</sup>, electron beam). This concise review therefore focuses on whether electrochemical reduction — a chemical-free, modular process — could be technically feasible for PFAS destruction.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"44 ","pages":"Article 101014"},"PeriodicalIF":8.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339824000157/pdfft?md5=e44966baf083d2ca2a5e30c8f63a057b&pid=1-s2.0-S2211339824000157-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrochemical reduction of per- and polyfluorinated alkyl substances (PFAS): is it possible? Applying experimental and quantum mechanical insights from the reductive defluorination literature\",\"authors\":\"Jacob F King,&nbsp;Brian P Chaplin\",\"doi\":\"10.1016/j.coche.2024.101014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Remediation of per- and polyfluorinated alkyl substances (PFAS) in global water systems is a critical human and environmental health challenge facing society. PFAS consumption is associated with a litany of adverse health effects, and our knowledge of these dangers is still evolving. Current techniques to remove PFAS from water include adsorption to media (e.g. granular activated carbon, ion-exchange resin), nanofiltration, and reverse osmosis. However, these processes create a concentrated PFAS residual that requires further management. Destructive techniques are therefore needed to detoxify these residuals. Oxidative techniques have garnered the most attention (e.g. supercritical water oxidation, electrochemical oxidation) but are energy intensive and potentially form toxic by-products. As an alternative, several groups have researched advanced reduction processes that form aqueous electrons, but these processes are still chemical and energy intensive (e.g. ultraviolet/SO<sub>3</sub><sup>2</sup><sup>−</sup>, electron beam). This concise review therefore focuses on whether electrochemical reduction — a chemical-free, modular process — could be technically feasible for PFAS destruction.</p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"44 \",\"pages\":\"Article 101014\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000157/pdfft?md5=e44966baf083d2ca2a5e30c8f63a057b&pid=1-s2.0-S2211339824000157-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339824000157\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339824000157","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对全球水系统中的全氟和多氟烷基物质(PFAS)进行补救是社会面临的一项重大人类和环境健康挑战。全氟辛烷磺酸的摄入与一系列不良健康影响有关,而我们对这些危险的认识仍在不断发展。目前去除水中 PFAS 的技术包括介质吸附(如颗粒活性炭、离子交换树脂)、纳滤和反渗透。然而,这些过程会产生浓缩的 PFAS 残留物,需要进一步管理。因此,需要采用破坏性技术对这些残留物进行解毒。氧化技术最受关注(如超临界水氧化、电化学氧化),但这种技术需要大量能源,并可能产生有毒副产品。作为一种替代方法,一些研究小组对形成水电子的高级还原过程进行了研究,但这些过程仍然是化学和能源密集型的(如紫外线/SO32-、电子束)。因此,本简明综述的重点是电化学还原法--一种不含化学物质的模块化工艺--在销毁全氟辛烷磺酸方面是否具有技术可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical reduction of per- and polyfluorinated alkyl substances (PFAS): is it possible? Applying experimental and quantum mechanical insights from the reductive defluorination literature

Remediation of per- and polyfluorinated alkyl substances (PFAS) in global water systems is a critical human and environmental health challenge facing society. PFAS consumption is associated with a litany of adverse health effects, and our knowledge of these dangers is still evolving. Current techniques to remove PFAS from water include adsorption to media (e.g. granular activated carbon, ion-exchange resin), nanofiltration, and reverse osmosis. However, these processes create a concentrated PFAS residual that requires further management. Destructive techniques are therefore needed to detoxify these residuals. Oxidative techniques have garnered the most attention (e.g. supercritical water oxidation, electrochemical oxidation) but are energy intensive and potentially form toxic by-products. As an alternative, several groups have researched advanced reduction processes that form aqueous electrons, but these processes are still chemical and energy intensive (e.g. ultraviolet/SO32, electron beam). This concise review therefore focuses on whether electrochemical reduction — a chemical-free, modular process — could be technically feasible for PFAS destruction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
期刊最新文献
New advance in application research of high-gravity process intensification technology Editorial Board Distillation in high gravity chemical engineering Gas–liquid and liquid–liquid vortex technology for process intensification Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1