Yinze Lei , Jing Xie , Zu'an Wang , María González-García , Pengwan Chen , Daniel Rittel
{"title":"防暴水炮能致命吗?","authors":"Yinze Lei , Jing Xie , Zu'an Wang , María González-García , Pengwan Chen , Daniel Rittel","doi":"10.1016/j.ijengsci.2024.104060","DOIUrl":null,"url":null,"abstract":"<div><p>A riot-control water cannon is a large, supposedly nonlethal apparatus that uses pressurized water to control and disperse crowds. However, riot-control water cannons may cause personal injury if directly aimed at the human forehead, for example. Therefore, we systematically analyzed, via a numerical model, the spatio-temporal evolution of the equivalent pressure of a water cannon and its influence on the human body dynamic response, especially considering the head and neck body regions. The simulation results suggest that 10 m is a critically dangerous working distance because the impact of a water cannon can lead to skull, cervical vertebra and brain injuries. In addition, compared to side/back impacts, frontal impacts are much more dangerous due to a more extensive range of head movement. Oblique impact induces rotational movement on the human body, resulting in a significant risk of injury. A quantitative injury risk analysis is presented to provide safety guidance for water cannon usage.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"199 ","pages":"Article 104060"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can riot-control water cannon be lethal?\",\"authors\":\"Yinze Lei , Jing Xie , Zu'an Wang , María González-García , Pengwan Chen , Daniel Rittel\",\"doi\":\"10.1016/j.ijengsci.2024.104060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A riot-control water cannon is a large, supposedly nonlethal apparatus that uses pressurized water to control and disperse crowds. However, riot-control water cannons may cause personal injury if directly aimed at the human forehead, for example. Therefore, we systematically analyzed, via a numerical model, the spatio-temporal evolution of the equivalent pressure of a water cannon and its influence on the human body dynamic response, especially considering the head and neck body regions. The simulation results suggest that 10 m is a critically dangerous working distance because the impact of a water cannon can lead to skull, cervical vertebra and brain injuries. In addition, compared to side/back impacts, frontal impacts are much more dangerous due to a more extensive range of head movement. Oblique impact induces rotational movement on the human body, resulting in a significant risk of injury. A quantitative injury risk analysis is presented to provide safety guidance for water cannon usage.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"199 \",\"pages\":\"Article 104060\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000442\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000442","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A riot-control water cannon is a large, supposedly nonlethal apparatus that uses pressurized water to control and disperse crowds. However, riot-control water cannons may cause personal injury if directly aimed at the human forehead, for example. Therefore, we systematically analyzed, via a numerical model, the spatio-temporal evolution of the equivalent pressure of a water cannon and its influence on the human body dynamic response, especially considering the head and neck body regions. The simulation results suggest that 10 m is a critically dangerous working distance because the impact of a water cannon can lead to skull, cervical vertebra and brain injuries. In addition, compared to side/back impacts, frontal impacts are much more dangerous due to a more extensive range of head movement. Oblique impact induces rotational movement on the human body, resulting in a significant risk of injury. A quantitative injury risk analysis is presented to provide safety guidance for water cannon usage.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.