拟南芥 2C 蛋白磷酸酶家族的功能筛选发现 PP2C15 通过靶向 BRI1 相关受体激酶 1 成为植物免疫的负调控因子。

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-04-01 DOI:10.1111/mpp.13447
Zhihong Diao, Rongqian Yang, Yizhu Wang, Junmei Cui, Junhao Li, Qiqi Wu, Yaxin Zhang, Xiaosong Yu, Benqiang Gong, Yan Huang, Guozhi Yu, Huipeng Yao, Jinya Guo, Huaiyu Zhang, Jinbo Shen, Andrea A Gust, Yi Cai
{"title":"拟南芥 2C 蛋白磷酸酶家族的功能筛选发现 PP2C15 通过靶向 BRI1 相关受体激酶 1 成为植物免疫的负调控因子。","authors":"Zhihong Diao, Rongqian Yang, Yizhu Wang, Junmei Cui, Junhao Li, Qiqi Wu, Yaxin Zhang, Xiaosong Yu, Benqiang Gong, Yan Huang, Guozhi Yu, Huipeng Yao, Jinya Guo, Huaiyu Zhang, Jinbo Shen, Andrea A Gust, Yi Cai","doi":"10.1111/mpp.13447","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 4","pages":"e13447"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984862/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional screening of the Arabidopsis 2C protein phosphatases family identifies PP2C15 as a negative regulator of plant immunity by targeting BRI1-associated receptor kinase 1.\",\"authors\":\"Zhihong Diao, Rongqian Yang, Yizhu Wang, Junmei Cui, Junhao Li, Qiqi Wu, Yaxin Zhang, Xiaosong Yu, Benqiang Gong, Yan Huang, Guozhi Yu, Huipeng Yao, Jinya Guo, Huaiyu Zhang, Jinbo Shen, Andrea A Gust, Yi Cai\",\"doi\":\"10.1111/mpp.13447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.</p>\",\"PeriodicalId\":18763,\"journal\":{\"name\":\"Molecular plant pathology\",\"volume\":\"25 4\",\"pages\":\"e13447\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular plant pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/mpp.13447\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.13447","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用植物免疫负调控因子的基因工程有可能极大地推动农业生物技术的发展,在不降低产量的情况下实现更高的抗病性。2C 型蛋白磷酸酶(PP2Cs)是植物中最大的蛋白磷酸酶群,通过去磷酸化阻断防御信号的传递,极有可能发挥负调控功能。在此,我们以 pFRK1::luciferase 为报告基因建立了 PP2C 功能原生质体筛选系统,发现 56 个 PP2Cs 中有 14 个能显著抑制 flg22 诱导的免疫反应。为了验证该系统的可靠性,我们使用了之前报道过的与 MAPK3/4/6 相互作用的蛋白磷酸酶 PP2C5,结果证实它是 PAMP 触发免疫(PTI)的负调控因子。我们进一步确定 PP2C15 是 BRI1 相关受体激酶 1(BAK1)的相互作用伙伴,BAK1 是质膜定位模式识别受体(PRR)最著名的共受体,也是 PTI 的核心成分。PP2C15 可使 BAK1 去磷酸化,并负向调节 BAK1 介导的 PTI 反应,如 MAPK3/4/6 激活、防御基因表达、活性氧爆发、气孔免疫、胼胝质沉积和病原体抗性。虽然pp2c15突变体的植株生长和千粒重与野生型植株相比有所降低,但pp2c5突变体并未表现出任何不良影响。因此,我们的研究结果加深了人们对 PP2C 家族成员在多个水平上负向调节植物免疫力的机制的理解,并指出了在不影响植物生长和产量的情况下,通过消除特定 PP2C 来增强植物抗性的一种可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional screening of the Arabidopsis 2C protein phosphatases family identifies PP2C15 as a negative regulator of plant immunity by targeting BRI1-associated receptor kinase 1.

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. A novel protein elicitor (Cs08297) from Ciboria shiraiana enhances plant disease resistance. Flg22-facilitated PGPR colonization in root tips and control of root rot. A single phosphorylatable amino acid residue is essential for the recognition of multiple potyviral HCPro effectors by potato Nytbr.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1