{"title":"使用掺硼金刚石电极同时伏安法检测水中的苯、萘和蒽","authors":"Aniela Pop , Florica Manea , Anamaria Baciu , Sorina Motoc (m. Ilies)","doi":"10.1016/j.sbsr.2024.100641","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a simple, fast and sensitive voltammetric detection using boron-doped diamond (BDD) electrode was proposed for simultaneous quantification of benzene (BZ), naphthalene (NF) and anthracene (AC) from priority organic pollutants class in real tap water. The electrochemical behaviors of individual and simultaneous BZ, NF and AC studied by cyclic voltammetry (CV) on BDD electrode showed a large separation between their oxidation potential, which allowed the development of simple simultaneous detection method. Differential-pulse voltammetry (DPV) technique operated at step potential of 5 mV and modulation amplitude of 200 mV enabled to reach the lowest limits of detection of 0.40 μM for BZ, 0.04 μM for NF and 0.70 nM for AC, which is appropriate for water quality control related to their environmental quality standards. No significant influence of chloride ions was found and the method was validated in real tap water and surface water spiked with known concentrations of BZ, NF and AC, which proved the practical utility of the method for water quality control.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100641"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000230/pdfft?md5=41d62b48b62becf79558e6b9870a3105&pid=1-s2.0-S2214180424000230-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous voltammetric detection of benzene, naphthalene and anthracene from water using boron-doped diamond electrode\",\"authors\":\"Aniela Pop , Florica Manea , Anamaria Baciu , Sorina Motoc (m. Ilies)\",\"doi\":\"10.1016/j.sbsr.2024.100641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a simple, fast and sensitive voltammetric detection using boron-doped diamond (BDD) electrode was proposed for simultaneous quantification of benzene (BZ), naphthalene (NF) and anthracene (AC) from priority organic pollutants class in real tap water. The electrochemical behaviors of individual and simultaneous BZ, NF and AC studied by cyclic voltammetry (CV) on BDD electrode showed a large separation between their oxidation potential, which allowed the development of simple simultaneous detection method. Differential-pulse voltammetry (DPV) technique operated at step potential of 5 mV and modulation amplitude of 200 mV enabled to reach the lowest limits of detection of 0.40 μM for BZ, 0.04 μM for NF and 0.70 nM for AC, which is appropriate for water quality control related to their environmental quality standards. No significant influence of chloride ions was found and the method was validated in real tap water and surface water spiked with known concentrations of BZ, NF and AC, which proved the practical utility of the method for water quality control.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"44 \",\"pages\":\"Article 100641\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000230/pdfft?md5=41d62b48b62becf79558e6b9870a3105&pid=1-s2.0-S2214180424000230-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种使用掺硼金刚石(BDD)电极的简单、快速和灵敏的伏安检测方法,用于同时定量真实自来水中优先有机污染物类别中的苯(BZ)、萘(NF)和蒽(AC)。在 BDD 电极上用循环伏安法(CV)研究了 BZ、NF 和 AC 的单独和同时电化学行为,结果表明它们的氧化电位之间存在较大的分离,这为开发简单的同时检测方法提供了条件。差分脉冲伏安(DPV)技术在 5 mV 的阶跃电位和 200 mV 的调制幅度下工作,使 BZ、NF 和 AC 的最低检测限分别为 0.40 μM、0.04 μM 和 0.70 nM,适合于与环境质量标准有关的水质控制。该方法在实际自来水和添加了已知浓度的 BZ、NF 和 AC 的地表水中没有发现明显的氯离子影响,证明了该方法在水质控制中的实用性。
Simultaneous voltammetric detection of benzene, naphthalene and anthracene from water using boron-doped diamond electrode
In this study, a simple, fast and sensitive voltammetric detection using boron-doped diamond (BDD) electrode was proposed for simultaneous quantification of benzene (BZ), naphthalene (NF) and anthracene (AC) from priority organic pollutants class in real tap water. The electrochemical behaviors of individual and simultaneous BZ, NF and AC studied by cyclic voltammetry (CV) on BDD electrode showed a large separation between their oxidation potential, which allowed the development of simple simultaneous detection method. Differential-pulse voltammetry (DPV) technique operated at step potential of 5 mV and modulation amplitude of 200 mV enabled to reach the lowest limits of detection of 0.40 μM for BZ, 0.04 μM for NF and 0.70 nM for AC, which is appropriate for water quality control related to their environmental quality standards. No significant influence of chloride ions was found and the method was validated in real tap water and surface water spiked with known concentrations of BZ, NF and AC, which proved the practical utility of the method for water quality control.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.