Prabhakaran Koothu Kesavan;Umashankar Subramaniam;Dhafer J. Almakhles
{"title":"基于 PMSM 驱动器速度环伪偏差前馈控制器的直接转矩控制器的实验室实现","authors":"Prabhakaran Koothu Kesavan;Umashankar Subramaniam;Dhafer J. Almakhles","doi":"10.30941/CESTEMS.2024.00004","DOIUrl":null,"url":null,"abstract":"This paper, evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward (PDFF) controller-based direct torque controller (DTC) for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller (HCC). The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed, electromagnetic torque, and stator current. Two case studies, one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation, has been validated to show the effectiveness of the proposed control strategy. The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488431","citationCount":"0","resultStr":"{\"title\":\"Laboratory Implementation of Direct Torque Controller based Speed Loop Pseudo Derivative Feedforward Controller for PMSM Drive\",\"authors\":\"Prabhakaran Koothu Kesavan;Umashankar Subramaniam;Dhafer J. Almakhles\",\"doi\":\"10.30941/CESTEMS.2024.00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper, evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward (PDFF) controller-based direct torque controller (DTC) for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller (HCC). The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed, electromagnetic torque, and stator current. Two case studies, one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation, has been validated to show the effectiveness of the proposed control strategy. The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.\",\"PeriodicalId\":100229,\"journal\":{\"name\":\"CES Transactions on Electrical Machines and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488431\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CES Transactions on Electrical Machines and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10488431/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10488431/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laboratory Implementation of Direct Torque Controller based Speed Loop Pseudo Derivative Feedforward Controller for PMSM Drive
This paper, evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward (PDFF) controller-based direct torque controller (DTC) for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller (HCC). The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed, electromagnetic torque, and stator current. Two case studies, one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation, has been validated to show the effectiveness of the proposed control strategy. The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.