{"title":"老化微塑料分析:综述","authors":"Yanqi Shi, Linping Shi, Hexinyue Huang, Kefu Ye, Luming Yang, Zeena Wang, Yifan Sun, Dunzhu Li, Yunhong Shi, Liwen Xiao, Shixiang Gao","doi":"10.1007/s10311-024-01731-5","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies microplastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identification, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Microplastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental samples. Combining two techniques is preferable for accurate detection and categorization.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1861 - 1888"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10311-024-01731-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of aged microplastics: a review\",\"authors\":\"Yanqi Shi, Linping Shi, Hexinyue Huang, Kefu Ye, Luming Yang, Zeena Wang, Yifan Sun, Dunzhu Li, Yunhong Shi, Liwen Xiao, Shixiang Gao\",\"doi\":\"10.1007/s10311-024-01731-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies microplastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identification, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Microplastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental samples. Combining two techniques is preferable for accurate detection and categorization.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 4\",\"pages\":\"1861 - 1888\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10311-024-01731-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01731-5\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01731-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies microplastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identification, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Microplastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental samples. Combining two techniques is preferable for accurate detection and categorization.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.