藻类与人脐静脉内皮细胞的光合共培养系统:缓解缺氧和缺氧/复氧损伤的效果

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2024-03-29 DOI:10.1049/bsb2.12078
Donghu Lin, Yuanyuan Chen, Xinyu Tao, Xin Che, Shiyu Li, Shiyu Cheng, Shuxin Qu
{"title":"藻类与人脐静脉内皮细胞的光合共培养系统:缓解缺氧和缺氧/复氧损伤的效果","authors":"Donghu Lin,&nbsp;Yuanyuan Chen,&nbsp;Xinyu Tao,&nbsp;Xin Che,&nbsp;Shiyu Li,&nbsp;Shiyu Cheng,&nbsp;Shuxin Qu","doi":"10.1049/bsb2.12078","DOIUrl":null,"url":null,"abstract":"<p>It is a developed photosynthetic co-culture system to alleviate the hypoxia and hypoxia/reoxygenation (H/R)-injured human umbilical vein endothelial cells (HUVECs). The algae, <i>Chlorella vulgaris</i>, were encapsulated to slow their growth while not affecting the photosynthetic oxygen-producing capacity by Layer-by-layer (LbL) using gelatin and sodium alginate as the positive and negative charges materials, respectively. Then, the photosynthetic co-culture system of HUVECs and self-oxygenating alginate hydrogel (Algae-gel) was constructed in which the optimal ratios between algae and HUVECs were 5:1 and 20:1 for a 2D or 3D co-cultured manner, respectively. It indicated that the 3D co-cultured manner of HUVECs needed more O<sub>2</sub> by the production of algae than it did in a 2D co-cultured manner. The co-cultured Algae-gel could alleviate hypoxia and the oxidative stress injury of hypoxia and hypoxia/reoxygenation (H/R)-treated HUVECs in the proliferation, intracellular ROS and cellular migratory ability. In addition, the Algae-gel could downregulate the expression of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF) of hypoxia and H/R-injured HUVECs due to the improvement of hypoxia and H/R injury. This photosynthetic co-culture system could offer a promising approach for repairing hypoxia and H/R-injured cells or tissue by providing safe and stable O<sub>2</sub>.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"10 2","pages":"76-88"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12078","citationCount":"0","resultStr":"{\"title\":\"Photosynthetic co-culture system of algae and human umbilical vein endothelial cells: The effect on alleviating hypoxia and hypoxia/reoxygenation injury\",\"authors\":\"Donghu Lin,&nbsp;Yuanyuan Chen,&nbsp;Xinyu Tao,&nbsp;Xin Che,&nbsp;Shiyu Li,&nbsp;Shiyu Cheng,&nbsp;Shuxin Qu\",\"doi\":\"10.1049/bsb2.12078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is a developed photosynthetic co-culture system to alleviate the hypoxia and hypoxia/reoxygenation (H/R)-injured human umbilical vein endothelial cells (HUVECs). The algae, <i>Chlorella vulgaris</i>, were encapsulated to slow their growth while not affecting the photosynthetic oxygen-producing capacity by Layer-by-layer (LbL) using gelatin and sodium alginate as the positive and negative charges materials, respectively. Then, the photosynthetic co-culture system of HUVECs and self-oxygenating alginate hydrogel (Algae-gel) was constructed in which the optimal ratios between algae and HUVECs were 5:1 and 20:1 for a 2D or 3D co-cultured manner, respectively. It indicated that the 3D co-cultured manner of HUVECs needed more O<sub>2</sub> by the production of algae than it did in a 2D co-cultured manner. The co-cultured Algae-gel could alleviate hypoxia and the oxidative stress injury of hypoxia and hypoxia/reoxygenation (H/R)-treated HUVECs in the proliferation, intracellular ROS and cellular migratory ability. In addition, the Algae-gel could downregulate the expression of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF) of hypoxia and H/R-injured HUVECs due to the improvement of hypoxia and H/R injury. This photosynthetic co-culture system could offer a promising approach for repairing hypoxia and H/R-injured cells or tissue by providing safe and stable O<sub>2</sub>.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"10 2\",\"pages\":\"76-88\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

这是一种新开发的光合共培养系统,用于缓解缺氧和缺氧/复氧(H/R)损伤的人脐静脉内皮细胞(HUVECs)。以明胶和海藻酸钠分别作为正电荷和负电荷材料,通过逐层包裹法(LbL)将藻类小球藻(Chlorella vulgaris)包裹起来,以减缓其生长速度,同时不影响其光合产氧能力。然后,构建了 HUVECs 与自氧海藻酸钠水凝胶(海藻凝胶)的光合共培养系统,在二维或三维共培养方式中,海藻与 HUVECs 的最佳比例分别为 5:1 和 20:1。结果表明,与二维共培养相比,三维共培养 HUVECs 需要更多的氧气来生产藻类。共培养的藻凝胶能减轻缺氧和缺氧/复氧(H/R)处理的HUVECs在增殖、细胞内ROS和细胞迁移能力方面的氧化应激损伤。此外,藻凝胶还能下调缺氧诱导因子 1α (HIF-1α)和血管内皮生长因子(VEGF)在缺氧和 H/R 损伤 HUVEC 中的表达,从而改善缺氧和 H/R 损伤。这种光合共培养系统通过提供安全稳定的氧气,为修复缺氧和 H/R 损伤的细胞或组织提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photosynthetic co-culture system of algae and human umbilical vein endothelial cells: The effect on alleviating hypoxia and hypoxia/reoxygenation injury

It is a developed photosynthetic co-culture system to alleviate the hypoxia and hypoxia/reoxygenation (H/R)-injured human umbilical vein endothelial cells (HUVECs). The algae, Chlorella vulgaris, were encapsulated to slow their growth while not affecting the photosynthetic oxygen-producing capacity by Layer-by-layer (LbL) using gelatin and sodium alginate as the positive and negative charges materials, respectively. Then, the photosynthetic co-culture system of HUVECs and self-oxygenating alginate hydrogel (Algae-gel) was constructed in which the optimal ratios between algae and HUVECs were 5:1 and 20:1 for a 2D or 3D co-cultured manner, respectively. It indicated that the 3D co-cultured manner of HUVECs needed more O2 by the production of algae than it did in a 2D co-cultured manner. The co-cultured Algae-gel could alleviate hypoxia and the oxidative stress injury of hypoxia and hypoxia/reoxygenation (H/R)-treated HUVECs in the proliferation, intracellular ROS and cellular migratory ability. In addition, the Algae-gel could downregulate the expression of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF) of hypoxia and H/R-injured HUVECs due to the improvement of hypoxia and H/R injury. This photosynthetic co-culture system could offer a promising approach for repairing hypoxia and H/R-injured cells or tissue by providing safe and stable O2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1