Zhi Dong, Changjun Han, Yanzhe Zhao, Jinmiao Huang, Chenrong Ling, Gaoling Hu, Yunhui Wang, Di Wang, Changhui Song, Yongqiang Yang
{"title":"异质微观结构和变形行为在通过激光粉末床熔融技术制造的锌中实现优异强度-电导率协同效应中的作用","authors":"Zhi Dong, Changjun Han, Yanzhe Zhao, Jinmiao Huang, Chenrong Ling, Gaoling Hu, Yunhui Wang, Di Wang, Changhui Song, Yongqiang Yang","doi":"10.1088/2631-7990/ad3929","DOIUrl":null,"url":null,"abstract":"\n Zinc (Zn) is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties. In this work, laser powder bed fusion (LPBF) additive manufacturing was employed to fabricate pure Zn with a heterogenous microstructure and exceptional strength-ductility synergy. An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99% using a laser power range of 80–90 W and a scanning speed of 900 mm/s. The Zn sample printed with a power of 80 W at a speed of 900 mm/s exhibited a hierarchical heterogenous microstructure consisting of millimeter-scale molten pool boundaries, micrometer-scale bimodal grains, and nanometer-scale pre-existing dislocations, due to rapid cooling rates and significant thermal gradients formed in the molten pools. The printed sample exhibited the highest ductility of ~12.1% among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength (~128.7 MPa). Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternatively arrangement of bimodal Zn grains with pre-existing dislocations. Additionally, continuous strain hardening was facilitated through the interactions between deformation twins, grains and dislocations as strain accumulated, further contributing to the superior strength-ductility synergy. These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion\",\"authors\":\"Zhi Dong, Changjun Han, Yanzhe Zhao, Jinmiao Huang, Chenrong Ling, Gaoling Hu, Yunhui Wang, Di Wang, Changhui Song, Yongqiang Yang\",\"doi\":\"10.1088/2631-7990/ad3929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Zinc (Zn) is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties. In this work, laser powder bed fusion (LPBF) additive manufacturing was employed to fabricate pure Zn with a heterogenous microstructure and exceptional strength-ductility synergy. An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99% using a laser power range of 80–90 W and a scanning speed of 900 mm/s. The Zn sample printed with a power of 80 W at a speed of 900 mm/s exhibited a hierarchical heterogenous microstructure consisting of millimeter-scale molten pool boundaries, micrometer-scale bimodal grains, and nanometer-scale pre-existing dislocations, due to rapid cooling rates and significant thermal gradients formed in the molten pools. The printed sample exhibited the highest ductility of ~12.1% among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength (~128.7 MPa). Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternatively arrangement of bimodal Zn grains with pre-existing dislocations. Additionally, continuous strain hardening was facilitated through the interactions between deformation twins, grains and dislocations as strain accumulated, further contributing to the superior strength-ductility synergy. These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad3929\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad3929","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion
Zinc (Zn) is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties. In this work, laser powder bed fusion (LPBF) additive manufacturing was employed to fabricate pure Zn with a heterogenous microstructure and exceptional strength-ductility synergy. An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99% using a laser power range of 80–90 W and a scanning speed of 900 mm/s. The Zn sample printed with a power of 80 W at a speed of 900 mm/s exhibited a hierarchical heterogenous microstructure consisting of millimeter-scale molten pool boundaries, micrometer-scale bimodal grains, and nanometer-scale pre-existing dislocations, due to rapid cooling rates and significant thermal gradients formed in the molten pools. The printed sample exhibited the highest ductility of ~12.1% among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength (~128.7 MPa). Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternatively arrangement of bimodal Zn grains with pre-existing dislocations. Additionally, continuous strain hardening was facilitated through the interactions between deformation twins, grains and dislocations as strain accumulated, further contributing to the superior strength-ductility synergy. These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.