一氧化氮在脊髓损伤中的作用机制

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Medical Gas Research Pub Date : 2024-03-28 DOI:10.4103/mgr.medgasres-d-23-00006
Jiahui Hao, Yang Ye, Guoguo Zhang, Haitao Shen, Jinquan Li, Gang Chen
{"title":"一氧化氮在脊髓损伤中的作用机制","authors":"Jiahui Hao, Yang Ye, Guoguo Zhang, Haitao Shen, Jinquan Li, Gang Chen","doi":"10.4103/mgr.medgasres-d-23-00006","DOIUrl":null,"url":null,"abstract":"Spinal cord injury (SCI) is a primary lesion of the spinal cord that results from external forces or diseases, accompanied by a cascade of secondary events. Nitric oxide, an endogenous gas that functions as a signaling molecule in the human body, plays a crucial role in vasodilation of smooth muscles, regulation of blood flow and pressure, and inflammatory response. This article provides a comprehensive overview of the involvement of nitric oxide in SCI and highlights recent advances in basic research on pharmacological agents that inhibit nitric oxide elevation after SCI, offering valuable insights for future therapeutic interventions targeting SCI.","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of nitric oxide in spinal cord injury\",\"authors\":\"Jiahui Hao, Yang Ye, Guoguo Zhang, Haitao Shen, Jinquan Li, Gang Chen\",\"doi\":\"10.4103/mgr.medgasres-d-23-00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spinal cord injury (SCI) is a primary lesion of the spinal cord that results from external forces or diseases, accompanied by a cascade of secondary events. Nitric oxide, an endogenous gas that functions as a signaling molecule in the human body, plays a crucial role in vasodilation of smooth muscles, regulation of blood flow and pressure, and inflammatory response. This article provides a comprehensive overview of the involvement of nitric oxide in SCI and highlights recent advances in basic research on pharmacological agents that inhibit nitric oxide elevation after SCI, offering valuable insights for future therapeutic interventions targeting SCI.\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.medgasres-d-23-00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.medgasres-d-23-00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)是由外力或疾病导致的脊髓原发性损伤,并伴有一系列继发性事件。一氧化氮是一种内源性气体,在人体内起着信号分子的作用,在平滑肌血管扩张、血流和血压调节以及炎症反应中起着至关重要的作用。本文全面概述了一氧化氮在 SCI 中的参与情况,并重点介绍了抑制 SCI 后一氧化氮升高的药理药物基础研究的最新进展,为未来针对 SCI 的治疗干预提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of nitric oxide in spinal cord injury
Spinal cord injury (SCI) is a primary lesion of the spinal cord that results from external forces or diseases, accompanied by a cascade of secondary events. Nitric oxide, an endogenous gas that functions as a signaling molecule in the human body, plays a crucial role in vasodilation of smooth muscles, regulation of blood flow and pressure, and inflammatory response. This article provides a comprehensive overview of the involvement of nitric oxide in SCI and highlights recent advances in basic research on pharmacological agents that inhibit nitric oxide elevation after SCI, offering valuable insights for future therapeutic interventions targeting SCI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1