Parth Manvar, Dharmesh Katariya, Amita Vyas, Pooja Bhanderi, R. Khunt
{"title":"微波辅助格罗伯克-布莱克本-比奈梅多组分反应合成咪唑并[1,2-a]吡啶-呋喃杂化物,作为白血病、结肠癌和前列腺癌的可能治疗方案","authors":"Parth Manvar, Dharmesh Katariya, Amita Vyas, Pooja Bhanderi, R. Khunt","doi":"10.2174/0122133356294226240228103251","DOIUrl":null,"url":null,"abstract":"\n\nMicrowave assisted ecofriendly catalytic protocol for the Groebke-Blackburn-Bienayme multicomponent reaction to synthesis imidazo[1,2-a]pyridine-furan hybrids as possible therapeutic option for leukemia, colon cancer and prostate cancer\n\n\n\nMicrowave synthesis has emerged as a potent tool for the more economical and environmentally friendly synthesis of organic compounds, such as derivatives of imidazo[1,2-a]pyridine. Compared to traditional synthesis, microwave radiation causes molecules to be excited and distributes thermal energy evenly in a shorter amount of time. Shorter response times and generally improved efficiency are the benefits of this.\n\n\n\nThe primary objective of the work presented in this article was to prepare imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. characterized their anticancer activities against leukemia, colon cancer and prostate cancer are evaluated.\n\n\n\nIn a sealed microwave glass vial, 5-methylfuran-2-carbaldehyde 1, 2-aminoazines 2a-g, isocyanides 3a-c in presence of 20mol\n\n\n\nWe have successfully synthesised the imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. The structures of the compounds were confirmed through various spectroscopic techniques. Characterized their anticancer activities against leukemia, colon cancer and prostate cancer are evaluated.\n\n\n\nThe reported protocol is advantageous over conventional methods of imidazo[1,2-a]pyridine derivatives. The time required for the reaction is much less as compared to the usual requirements of reflux. Compound 4e, 4f, 4n and 4o shows the most increased activity against cell line RPMI-8226, HCT-116 and PC-3 of Leukemia, Colon cancer and Prostate cancer respectively. By using the potential of imidazo[1,2-a]pyridine-furan based compounds via sustainable green approach, more effective and accurate cancer treatments can be designed in future.\n\n\n\nNA\n","PeriodicalId":503957,"journal":{"name":"Current Microwave Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave Assisted Groebke-Blackburn-Bienayme Multicomponent Reaction to Synthesis of Imidazo[1,2-a]pyridine-furan Hybrids as Possible Therapeutic Option for Leukemia, Colon Cancer and Prostate Cancer\",\"authors\":\"Parth Manvar, Dharmesh Katariya, Amita Vyas, Pooja Bhanderi, R. Khunt\",\"doi\":\"10.2174/0122133356294226240228103251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nMicrowave assisted ecofriendly catalytic protocol for the Groebke-Blackburn-Bienayme multicomponent reaction to synthesis imidazo[1,2-a]pyridine-furan hybrids as possible therapeutic option for leukemia, colon cancer and prostate cancer\\n\\n\\n\\nMicrowave synthesis has emerged as a potent tool for the more economical and environmentally friendly synthesis of organic compounds, such as derivatives of imidazo[1,2-a]pyridine. Compared to traditional synthesis, microwave radiation causes molecules to be excited and distributes thermal energy evenly in a shorter amount of time. Shorter response times and generally improved efficiency are the benefits of this.\\n\\n\\n\\nThe primary objective of the work presented in this article was to prepare imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. characterized their anticancer activities against leukemia, colon cancer and prostate cancer are evaluated.\\n\\n\\n\\nIn a sealed microwave glass vial, 5-methylfuran-2-carbaldehyde 1, 2-aminoazines 2a-g, isocyanides 3a-c in presence of 20mol\\n\\n\\n\\nWe have successfully synthesised the imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. The structures of the compounds were confirmed through various spectroscopic techniques. Characterized their anticancer activities against leukemia, colon cancer and prostate cancer are evaluated.\\n\\n\\n\\nThe reported protocol is advantageous over conventional methods of imidazo[1,2-a]pyridine derivatives. The time required for the reaction is much less as compared to the usual requirements of reflux. Compound 4e, 4f, 4n and 4o shows the most increased activity against cell line RPMI-8226, HCT-116 and PC-3 of Leukemia, Colon cancer and Prostate cancer respectively. By using the potential of imidazo[1,2-a]pyridine-furan based compounds via sustainable green approach, more effective and accurate cancer treatments can be designed in future.\\n\\n\\n\\nNA\\n\",\"PeriodicalId\":503957,\"journal\":{\"name\":\"Current Microwave Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microwave Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122133356294226240228103251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microwave Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122133356294226240228103251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microwave Assisted Groebke-Blackburn-Bienayme Multicomponent Reaction to Synthesis of Imidazo[1,2-a]pyridine-furan Hybrids as Possible Therapeutic Option for Leukemia, Colon Cancer and Prostate Cancer
Microwave assisted ecofriendly catalytic protocol for the Groebke-Blackburn-Bienayme multicomponent reaction to synthesis imidazo[1,2-a]pyridine-furan hybrids as possible therapeutic option for leukemia, colon cancer and prostate cancer
Microwave synthesis has emerged as a potent tool for the more economical and environmentally friendly synthesis of organic compounds, such as derivatives of imidazo[1,2-a]pyridine. Compared to traditional synthesis, microwave radiation causes molecules to be excited and distributes thermal energy evenly in a shorter amount of time. Shorter response times and generally improved efficiency are the benefits of this.
The primary objective of the work presented in this article was to prepare imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. characterized their anticancer activities against leukemia, colon cancer and prostate cancer are evaluated.
In a sealed microwave glass vial, 5-methylfuran-2-carbaldehyde 1, 2-aminoazines 2a-g, isocyanides 3a-c in presence of 20mol
We have successfully synthesised the imidazo[1,2-a]pyridine-furan hybrids via Groebke-Blackburn-Bienayme multicomponent reaction using PEG 400 in microwave irradiation as green approach. The structures of the compounds were confirmed through various spectroscopic techniques. Characterized their anticancer activities against leukemia, colon cancer and prostate cancer are evaluated.
The reported protocol is advantageous over conventional methods of imidazo[1,2-a]pyridine derivatives. The time required for the reaction is much less as compared to the usual requirements of reflux. Compound 4e, 4f, 4n and 4o shows the most increased activity against cell line RPMI-8226, HCT-116 and PC-3 of Leukemia, Colon cancer and Prostate cancer respectively. By using the potential of imidazo[1,2-a]pyridine-furan based compounds via sustainable green approach, more effective and accurate cancer treatments can be designed in future.
NA