潜空间向量对深度卷积 GAN 生成动物面孔的影响:分析

İsa Ataş
{"title":"潜空间向量对深度卷积 GAN 生成动物面孔的影响:分析","authors":"İsa Ataş","doi":"10.24012/dumf.1393797","DOIUrl":null,"url":null,"abstract":"Researchers are showing great interest in Generative Adversarial Networks (GANs), which use deep learning techniques to mimic the content of datasets and are particularly adept at data generation. Despite their impressive performance, there is uncertainty about how GANs precisely map latent space vectors to realistic images and how the chosen dimensionality of the latent space affects the quality of the generated images. In this paper, we explored the potential of generative models in generating animal face images. For this purpose, we used the Deep Convolutional Generative Adversarial Network (DCGAN) model as a reference. To analyze the impact of selected latent space vectors, we synthesized animal face images by training data representations in the DCGAN model with the well-known AFHQ dataset from the literature. We compared the quantitative evaluation of the produced images using Fréchet Inception Distance (FID) and Inception Score (IS). As a result, we demonstrated that generative models can produce images with latent sizes significantly smaller and larger than the standard size of 100.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis\",\"authors\":\"İsa Ataş\",\"doi\":\"10.24012/dumf.1393797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers are showing great interest in Generative Adversarial Networks (GANs), which use deep learning techniques to mimic the content of datasets and are particularly adept at data generation. Despite their impressive performance, there is uncertainty about how GANs precisely map latent space vectors to realistic images and how the chosen dimensionality of the latent space affects the quality of the generated images. In this paper, we explored the potential of generative models in generating animal face images. For this purpose, we used the Deep Convolutional Generative Adversarial Network (DCGAN) model as a reference. To analyze the impact of selected latent space vectors, we synthesized animal face images by training data representations in the DCGAN model with the well-known AFHQ dataset from the literature. We compared the quantitative evaluation of the produced images using Fréchet Inception Distance (FID) and Inception Score (IS). As a result, we demonstrated that generative models can produce images with latent sizes significantly smaller and larger than the standard size of 100.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1393797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1393797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究人员对生成对抗网络(GANs)表现出极大的兴趣,这种网络使用深度学习技术来模仿数据集的内容,尤其擅长数据生成。尽管其性能令人印象深刻,但对于 GANs 如何将潜空间向量精确映射到现实图像,以及所选的潜空间维度如何影响生成图像的质量,仍存在不确定性。在本文中,我们探索了生成模型在生成动物脸部图像方面的潜力。为此,我们使用了深度卷积生成对抗网络(DCGAN)模型作为参考。为了分析所选潜在空间向量的影响,我们用文献中著名的 AFHQ 数据集训练了 DCGAN 模型中的数据表示,从而合成了动物人脸图像。我们使用弗雷谢特起始距离(FID)和起始分数(IS)对生成的图像进行了定量评估比较。结果表明,生成模型可以生成潜像尺寸明显小于或大于标准尺寸 100 的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis
Researchers are showing great interest in Generative Adversarial Networks (GANs), which use deep learning techniques to mimic the content of datasets and are particularly adept at data generation. Despite their impressive performance, there is uncertainty about how GANs precisely map latent space vectors to realistic images and how the chosen dimensionality of the latent space affects the quality of the generated images. In this paper, we explored the potential of generative models in generating animal face images. For this purpose, we used the Deep Convolutional Generative Adversarial Network (DCGAN) model as a reference. To analyze the impact of selected latent space vectors, we synthesized animal face images by training data representations in the DCGAN model with the well-known AFHQ dataset from the literature. We compared the quantitative evaluation of the produced images using Fréchet Inception Distance (FID) and Inception Score (IS). As a result, we demonstrated that generative models can produce images with latent sizes significantly smaller and larger than the standard size of 100.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1