对植物富亮氨酸重复 (LRR) 跨膜受体的配体识别和受体激活的结构见解

Xiaobin Wei, Xinyi Liu, Xin Zhang, Shuangyu Guo, Jiaqing Shi
{"title":"对植物富亮氨酸重复 (LRR) 跨膜受体的配体识别和受体激活的结构见解","authors":"Xiaobin Wei,&nbsp;Xinyi Liu,&nbsp;Xin Zhang,&nbsp;Shuangyu Guo,&nbsp;Jiaqing Shi","doi":"10.1016/j.ncrops.2024.100022","DOIUrl":null,"url":null,"abstract":"<div><p>Higher plants must coordinate their own growth and development by responding to a myriad of internal signals. Simultaneously, confronted with external signals such as pathogen invasion, drought and so on, they must constantly adjust themselves to adapt. These signals can be specifically recognized by transmembrane receptors on the cytoplasmic membrane, comprising receptor kinases (RKs) and receptor-like proteins (RLPs). Among these, leucine-rich repeat receptor kinases (LRR-RKs) and leucine-rich repeat receptor-like proteins (LRR-RLPs) form the largest category. By using X-ray crystallography and cryo-electron microscopy (cryo-EM) single-particle analysis, the ligand recognition and receptor activation mechanisms of some LRR-RKs/RLPs have been elucidated at the atomic scale. This deepens our understanding of the roles played by LRR-RKs/RLPs in the plant growth, development, responses to pathogen invasion and other environmental stresses. Moreover, it provides clues for precise genetic improvement aimed at improving yield, quality and stress resistance in economic crops. This review summarizes the recent progress in structural research on LRR-RKs/RLPs concerning plant growth, development, immune responses and other environmental stress responses. Additionally, this paper discusses how these receptors recognize their respective ligands and how ligand recognition triggers receptor activation from a structural biology perspective, offering new insights for crop improvement.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000128/pdfft?md5=f12cddb157de951e0d3412f72851ffe4&pid=1-s2.0-S2949952624000128-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural insights into ligand recognition and receptor activation of plant leucine-rich repeat (LRR) transmembrane receptors\",\"authors\":\"Xiaobin Wei,&nbsp;Xinyi Liu,&nbsp;Xin Zhang,&nbsp;Shuangyu Guo,&nbsp;Jiaqing Shi\",\"doi\":\"10.1016/j.ncrops.2024.100022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Higher plants must coordinate their own growth and development by responding to a myriad of internal signals. Simultaneously, confronted with external signals such as pathogen invasion, drought and so on, they must constantly adjust themselves to adapt. These signals can be specifically recognized by transmembrane receptors on the cytoplasmic membrane, comprising receptor kinases (RKs) and receptor-like proteins (RLPs). Among these, leucine-rich repeat receptor kinases (LRR-RKs) and leucine-rich repeat receptor-like proteins (LRR-RLPs) form the largest category. By using X-ray crystallography and cryo-electron microscopy (cryo-EM) single-particle analysis, the ligand recognition and receptor activation mechanisms of some LRR-RKs/RLPs have been elucidated at the atomic scale. This deepens our understanding of the roles played by LRR-RKs/RLPs in the plant growth, development, responses to pathogen invasion and other environmental stresses. Moreover, it provides clues for precise genetic improvement aimed at improving yield, quality and stress resistance in economic crops. This review summarizes the recent progress in structural research on LRR-RKs/RLPs concerning plant growth, development, immune responses and other environmental stress responses. Additionally, this paper discusses how these receptors recognize their respective ligands and how ligand recognition triggers receptor activation from a structural biology perspective, offering new insights for crop improvement.</p></div>\",\"PeriodicalId\":100953,\"journal\":{\"name\":\"New Crops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000128/pdfft?md5=f12cddb157de951e0d3412f72851ffe4&pid=1-s2.0-S2949952624000128-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高等植物必须通过对大量内部信号做出反应来协调自身的生长和发育。同时,面对病原体入侵、干旱等外部信号,它们必须不断调整自身以适应环境。细胞质膜上的跨膜受体(包括受体激酶(RK)和类受体蛋白(RLP))可以特异性地识别这些信号。其中,富亮氨酸重复受体激酶(LRR-RKs)和富亮氨酸重复受体样蛋白(LRR-RLPs)是最大的一类。通过使用 X 射线晶体学和低温电子显微镜(cryo-EM)单颗粒分析,一些 LRR-RKs/RLPs 的配体识别和受体激活机制已在原子尺度上得到阐明。这加深了我们对 LRR-RKs/RLPs 在植物生长、发育、对病原体入侵和其他环境胁迫的反应中所扮演角色的理解。此外,它还为旨在提高经济作物产量、品质和抗逆性的精确遗传改良提供了线索。本综述总结了有关植物生长、发育、免疫反应和其他环境胁迫反应的 LRR-RKs/RLPs 结构研究的最新进展。此外,本文还从结构生物学的角度讨论了这些受体如何识别各自的配体,以及配体识别如何触发受体激活,从而为作物改良提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural insights into ligand recognition and receptor activation of plant leucine-rich repeat (LRR) transmembrane receptors

Higher plants must coordinate their own growth and development by responding to a myriad of internal signals. Simultaneously, confronted with external signals such as pathogen invasion, drought and so on, they must constantly adjust themselves to adapt. These signals can be specifically recognized by transmembrane receptors on the cytoplasmic membrane, comprising receptor kinases (RKs) and receptor-like proteins (RLPs). Among these, leucine-rich repeat receptor kinases (LRR-RKs) and leucine-rich repeat receptor-like proteins (LRR-RLPs) form the largest category. By using X-ray crystallography and cryo-electron microscopy (cryo-EM) single-particle analysis, the ligand recognition and receptor activation mechanisms of some LRR-RKs/RLPs have been elucidated at the atomic scale. This deepens our understanding of the roles played by LRR-RKs/RLPs in the plant growth, development, responses to pathogen invasion and other environmental stresses. Moreover, it provides clues for precise genetic improvement aimed at improving yield, quality and stress resistance in economic crops. This review summarizes the recent progress in structural research on LRR-RKs/RLPs concerning plant growth, development, immune responses and other environmental stress responses. Additionally, this paper discusses how these receptors recognize their respective ligands and how ligand recognition triggers receptor activation from a structural biology perspective, offering new insights for crop improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meiosis in plants: From understanding to manipulation Perspectives on developing natural colored cotton through carotenoid biofortification Genome-wide characterization, identification, and isolation of auxin response factor (ARF) gene family in maize Precise control of falling flowers and fruits is a key part of improving quality and efficiency Molecular mechanisms of rice seed germination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1