Nidya Chitraningrum, L. Banowati, Dina Herdiana, Budi Mulyati, Indra Sakti, Ahmad Fudholi, Huzair Saputra, Salman Farishi, Kahlil Muchtar, Agus Andria
{"title":"基于深度学习 YOLO-v5 和 YOLO-v8 的玉米叶病检测对比研究","authors":"Nidya Chitraningrum, L. Banowati, Dina Herdiana, Budi Mulyati, Indra Sakti, Ahmad Fudholi, Huzair Saputra, Salman Farishi, Kahlil Muchtar, Agus Andria","doi":"10.5614/j.eng.technol.sci.2024.56.1.5","DOIUrl":null,"url":null,"abstract":"Corn is one of the primary carbohydrate-rich food commodities in Southeast Asian countries, among which Indonesia. Corn production is highly dependent on the health of the corn plant. Infected plants will decrease corn plant productivity. Usually, corn farmers use conventional methods to control diseases in corn plants. Still, these methods are not effective and efficient because they require a long time and a lot of human labor. Deep learning-based plant disease detection has recently been used for early disease detection in agriculture. In this work, we used convolutional neural network algorithms, namely YOLO-v5 and YOLO-v8, to detect infected corn leaves in the public data set called ‘Corn Leaf Infection Data set’ from the Kaggle repository. We compared the mean average precision (mAP) of mAP 50 and mAP 50-95 between YOLO-v5 and YOLO-v8. YOLO-v8 showed better accuracy at an mAP 50 of 0.965 and an mAP 50-95 of 0.727. YOLO-v8 also showed a higher detection number of 12 detections than YOLO-v5 at 11 detections. Both YOLO algorithms required about 2.49 to 3.75 hours to detect the infected corn leaves. This all-trained model could be an effective solution for early disease detection in future corn plantations.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison Study of Corn Leaf Disease Detection based on Deep Learning YOLO-v5 and YOLO-v8\",\"authors\":\"Nidya Chitraningrum, L. Banowati, Dina Herdiana, Budi Mulyati, Indra Sakti, Ahmad Fudholi, Huzair Saputra, Salman Farishi, Kahlil Muchtar, Agus Andria\",\"doi\":\"10.5614/j.eng.technol.sci.2024.56.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corn is one of the primary carbohydrate-rich food commodities in Southeast Asian countries, among which Indonesia. Corn production is highly dependent on the health of the corn plant. Infected plants will decrease corn plant productivity. Usually, corn farmers use conventional methods to control diseases in corn plants. Still, these methods are not effective and efficient because they require a long time and a lot of human labor. Deep learning-based plant disease detection has recently been used for early disease detection in agriculture. In this work, we used convolutional neural network algorithms, namely YOLO-v5 and YOLO-v8, to detect infected corn leaves in the public data set called ‘Corn Leaf Infection Data set’ from the Kaggle repository. We compared the mean average precision (mAP) of mAP 50 and mAP 50-95 between YOLO-v5 and YOLO-v8. YOLO-v8 showed better accuracy at an mAP 50 of 0.965 and an mAP 50-95 of 0.727. YOLO-v8 also showed a higher detection number of 12 detections than YOLO-v5 at 11 detections. Both YOLO algorithms required about 2.49 to 3.75 hours to detect the infected corn leaves. This all-trained model could be an effective solution for early disease detection in future corn plantations.\",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2024.56.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2024.56.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparison Study of Corn Leaf Disease Detection based on Deep Learning YOLO-v5 and YOLO-v8
Corn is one of the primary carbohydrate-rich food commodities in Southeast Asian countries, among which Indonesia. Corn production is highly dependent on the health of the corn plant. Infected plants will decrease corn plant productivity. Usually, corn farmers use conventional methods to control diseases in corn plants. Still, these methods are not effective and efficient because they require a long time and a lot of human labor. Deep learning-based plant disease detection has recently been used for early disease detection in agriculture. In this work, we used convolutional neural network algorithms, namely YOLO-v5 and YOLO-v8, to detect infected corn leaves in the public data set called ‘Corn Leaf Infection Data set’ from the Kaggle repository. We compared the mean average precision (mAP) of mAP 50 and mAP 50-95 between YOLO-v5 and YOLO-v8. YOLO-v8 showed better accuracy at an mAP 50 of 0.965 and an mAP 50-95 of 0.727. YOLO-v8 also showed a higher detection number of 12 detections than YOLO-v5 at 11 detections. Both YOLO algorithms required about 2.49 to 3.75 hours to detect the infected corn leaves. This all-trained model could be an effective solution for early disease detection in future corn plantations.
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.