B. Bergmann, S. Gohl, D. Garvey, Jindřich Jelínek, P. Smolyanskiy
{"title":"空间 Timepix 探测器的成果和前景--从低地球轨道辐射监测到天体粒子物理学","authors":"B. Bergmann, S. Gohl, D. Garvey, Jindřich Jelínek, P. Smolyanskiy","doi":"10.3390/instruments8010017","DOIUrl":null,"url":null,"abstract":"In space application, hybrid pixel detectors of the Timepix family have been considered mainly for the measurement of radiation levels and dosimetry in low earth orbits. Using the example of the Space Application of Timepix Radiation Monitor (SATRAM), we demonstrate the unique capabilities of Timepix-based miniaturized radiation detectors for particle separation. We present the incident proton energy spectrum in the geographic location of SAA obtained by using Bayesian unfolding of the stopping power spectrum measured with a single-layer Timepix. We assess the measurement stability and the resiliency of the detector to the space environment, thereby demonstrating that even though degradation is observed, data quality has not been affected significantly over more than 10 years. Based on the SATRAM heritage and the capabilities of the latest-generation Timepix series chips, we discuss their applicability for use in a compact magnetic spectrometer for a deep space mission or in the Jupiter radiation belts, as well as their capability for use as single-layer X- and γ-ray polarimeters. The latter was supported by the measurement of the polarization of scattered radiation in a laboratory experiment, where a modulation of 80% was found.","PeriodicalId":507788,"journal":{"name":"Instruments","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Results and Perspectives of Timepix Detectors in Space—From Radiation Monitoring in Low Earth Orbit to Astroparticle Physics\",\"authors\":\"B. Bergmann, S. Gohl, D. Garvey, Jindřich Jelínek, P. Smolyanskiy\",\"doi\":\"10.3390/instruments8010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In space application, hybrid pixel detectors of the Timepix family have been considered mainly for the measurement of radiation levels and dosimetry in low earth orbits. Using the example of the Space Application of Timepix Radiation Monitor (SATRAM), we demonstrate the unique capabilities of Timepix-based miniaturized radiation detectors for particle separation. We present the incident proton energy spectrum in the geographic location of SAA obtained by using Bayesian unfolding of the stopping power spectrum measured with a single-layer Timepix. We assess the measurement stability and the resiliency of the detector to the space environment, thereby demonstrating that even though degradation is observed, data quality has not been affected significantly over more than 10 years. Based on the SATRAM heritage and the capabilities of the latest-generation Timepix series chips, we discuss their applicability for use in a compact magnetic spectrometer for a deep space mission or in the Jupiter radiation belts, as well as their capability for use as single-layer X- and γ-ray polarimeters. The latter was supported by the measurement of the polarization of scattered radiation in a laboratory experiment, where a modulation of 80% was found.\",\"PeriodicalId\":507788,\"journal\":{\"name\":\"Instruments\",\"volume\":\"139 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments8010017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
在空间应用中,Timepix 系列混合像素探测器主要用于测量低地球轨道的辐射水平和剂量。我们以 Timepix 辐射监测器的空间应用(SATRAM)为例,展示了基于 Timepix 的微型辐射探测器在粒子分离方面的独特能力。我们介绍了利用单层 Timepix 测得的停止功率谱的贝叶斯展开法获得的 SAA 地理位置的入射质子能谱。我们评估了探测器的测量稳定性和对空间环境的适应能力,从而证明,尽管观测到了衰减,但十多年来数据质量并未受到重大影响。基于 SATRAM 的传统和最新一代 Timepix 系列芯片的能力,我们讨论了它们在深空任务或木星辐射带中用于紧凑型磁谱仪的适用性,以及用作单层 X 射线和 γ 射线偏振计的能力。在实验室实验中对散射辐射的极化进行了测量,发现调制率为 80%,这为后者提供了支持。
Results and Perspectives of Timepix Detectors in Space—From Radiation Monitoring in Low Earth Orbit to Astroparticle Physics
In space application, hybrid pixel detectors of the Timepix family have been considered mainly for the measurement of radiation levels and dosimetry in low earth orbits. Using the example of the Space Application of Timepix Radiation Monitor (SATRAM), we demonstrate the unique capabilities of Timepix-based miniaturized radiation detectors for particle separation. We present the incident proton energy spectrum in the geographic location of SAA obtained by using Bayesian unfolding of the stopping power spectrum measured with a single-layer Timepix. We assess the measurement stability and the resiliency of the detector to the space environment, thereby demonstrating that even though degradation is observed, data quality has not been affected significantly over more than 10 years. Based on the SATRAM heritage and the capabilities of the latest-generation Timepix series chips, we discuss their applicability for use in a compact magnetic spectrometer for a deep space mission or in the Jupiter radiation belts, as well as their capability for use as single-layer X- and γ-ray polarimeters. The latter was supported by the measurement of the polarization of scattered radiation in a laboratory experiment, where a modulation of 80% was found.