基于人体振动重新审视大跨度桥梁在涡流诱导振动下的适用性

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Structural Control & Health Monitoring Pub Date : 2024-02-23 DOI:10.1155/2024/9933060
Jingxi Qin, Jin Zhu, Han Li, Ziluo Xiong, Yongle Li
{"title":"基于人体振动重新审视大跨度桥梁在涡流诱导振动下的适用性","authors":"Jingxi Qin,&nbsp;Jin Zhu,&nbsp;Han Li,&nbsp;Ziluo Xiong,&nbsp;Yongle Li","doi":"10.1155/2024/9933060","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Vortex-induced vibrations (VIVs) have been frequently observed on long-span bridges (LSBs) in recent years. Unlike other destructive aerodynamic phenomena of LSBs, VIVs are self-limited in amplitude, primarily affecting the serviceability of LSBs through unpleasant users’ feelings characterized by human body vibration. Most existing studies discussed this issue based on a popular human body vibration measure, the human comfort index (HCI) in ISO 2631-1. However, the HCI is primarily concerned with vibration above 0.5 Hz, which might be unsuitable for disclosing the influence of VIV because of the low-frequency features of LSBs’ VIVs. To address this limitation, this study advocates using the motion sickness index (MSI) to revisit the serviceability of LSBs experiencing VIVs based on an innovative wind-traffic-bridge simulation platform. Different from current studies exclusively focusing on vehicle riders, this paper additionally incorporates a vibration model for standing persons to understand the feelings of the pedestrians on the bridge. On this basis, the influence of VIV and traffic load is comprehensively examined. The results indicate that the HCI is inappropriate for exploring the serviceability of LSBs under VIVs regarding users’ feelings, but the MSI is a good alternative. Moreover, the increasing traffic load can obviously mitigate the adverse effect of VIVs on the bridge’s serviceability, which may be utilized to control VIVs of LSBs in real-world engineering practice.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9933060","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Serviceability of Long-Span Bridges under Vortex-Induced Vibrations Based on Human Body Vibration\",\"authors\":\"Jingxi Qin,&nbsp;Jin Zhu,&nbsp;Han Li,&nbsp;Ziluo Xiong,&nbsp;Yongle Li\",\"doi\":\"10.1155/2024/9933060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Vortex-induced vibrations (VIVs) have been frequently observed on long-span bridges (LSBs) in recent years. Unlike other destructive aerodynamic phenomena of LSBs, VIVs are self-limited in amplitude, primarily affecting the serviceability of LSBs through unpleasant users’ feelings characterized by human body vibration. Most existing studies discussed this issue based on a popular human body vibration measure, the human comfort index (HCI) in ISO 2631-1. However, the HCI is primarily concerned with vibration above 0.5 Hz, which might be unsuitable for disclosing the influence of VIV because of the low-frequency features of LSBs’ VIVs. To address this limitation, this study advocates using the motion sickness index (MSI) to revisit the serviceability of LSBs experiencing VIVs based on an innovative wind-traffic-bridge simulation platform. Different from current studies exclusively focusing on vehicle riders, this paper additionally incorporates a vibration model for standing persons to understand the feelings of the pedestrians on the bridge. On this basis, the influence of VIV and traffic load is comprehensively examined. The results indicate that the HCI is inappropriate for exploring the serviceability of LSBs under VIVs regarding users’ feelings, but the MSI is a good alternative. Moreover, the increasing traffic load can obviously mitigate the adverse effect of VIVs on the bridge’s serviceability, which may be utilized to control VIVs of LSBs in real-world engineering practice.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9933060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9933060\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9933060","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在大跨度桥梁(LSB)上经常观察到涡流诱导振动(VIVs)。与大跨度桥梁的其他破坏性空气动力现象不同,涡旋诱导振动的振幅是自限制的,主要通过以人体振动为特征的不愉快的用户感受来影响大跨度桥梁的适用性。现有的大多数研究都是基于一种流行的人体振动测量方法,即 ISO 2631-1 中的人体舒适度指数(HCI)来讨论这一问题的。然而,HCI 主要关注 0.5 赫兹以上的振动,由于 LSB 的 VIV 具有低频特征,因此可能不适合揭示 VIV 的影响。针对这一局限性,本研究基于创新的风-交通-桥梁模拟平台,提倡使用晕车指数(MSI)来重新审视发生 VIV 的 LSB 的可维护性。有别于目前仅针对车辆乘坐者的研究,本文还加入了站立者的振动模型,以了解桥上行人的感受。在此基础上,全面考察了 VIV 和交通荷载的影响。结果表明,就用户感受而言,人机交互指数不适合用于探索 VIV 条件下 LSB 的适用性,而 MSI 则是一个很好的替代方案。此外,交通荷载的增加可以明显减轻 VIV 对桥梁适用性的不利影响,在实际工程实践中可用于控制 LSB 的 VIV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting the Serviceability of Long-Span Bridges under Vortex-Induced Vibrations Based on Human Body Vibration

Vortex-induced vibrations (VIVs) have been frequently observed on long-span bridges (LSBs) in recent years. Unlike other destructive aerodynamic phenomena of LSBs, VIVs are self-limited in amplitude, primarily affecting the serviceability of LSBs through unpleasant users’ feelings characterized by human body vibration. Most existing studies discussed this issue based on a popular human body vibration measure, the human comfort index (HCI) in ISO 2631-1. However, the HCI is primarily concerned with vibration above 0.5 Hz, which might be unsuitable for disclosing the influence of VIV because of the low-frequency features of LSBs’ VIVs. To address this limitation, this study advocates using the motion sickness index (MSI) to revisit the serviceability of LSBs experiencing VIVs based on an innovative wind-traffic-bridge simulation platform. Different from current studies exclusively focusing on vehicle riders, this paper additionally incorporates a vibration model for standing persons to understand the feelings of the pedestrians on the bridge. On this basis, the influence of VIV and traffic load is comprehensively examined. The results indicate that the HCI is inappropriate for exploring the serviceability of LSBs under VIVs regarding users’ feelings, but the MSI is a good alternative. Moreover, the increasing traffic load can obviously mitigate the adverse effect of VIVs on the bridge’s serviceability, which may be utilized to control VIVs of LSBs in real-world engineering practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
期刊最新文献
Damage Identification in Large-Scale Bridge Girders Using Output-Only Modal Flexibility–Based Deflections and Span-Similar Virtual Beam Models A Multiple-Point Deformation Monitoring Model for Ultrahigh Arch Dams Using Temperature Lag and Optimized Gaussian Process Regression A Graph-Based Methodology for Optimal Design of Inerter-Based Passive Vibration Absorbers With Minimum Complexity Automatic Identification and Segmentation of Long-Span Rail-and-Road Cable-Stayed Bridges Using UAV LiDAR Point Cloud Development of 6 Degrees of Freedom Parallel-Link Shaking Table for Three-Dimensional Movement on Centrifugal Loading Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1