使用最新的 GAN 方法处理航空图像

Sara Altun Güven, Buket Toptaş
{"title":"使用最新的 GAN 方法处理航空图像","authors":"Sara Altun Güven, Buket Toptaş","doi":"10.24012/dumf.1386384","DOIUrl":null,"url":null,"abstract":"Object detection and segmentation in aerial images is currently a vibrant and significant field of research. The iSAID dataset has been created for object detection in images captured by aerial vehicles. In this study, image semantic segmentation was performed on the iSAID dataset using Generative Adversarial Networks (GANs). The compared GAN methods are CycleGAN, DCLGAN, SimDCL, and SSimDCL. All methods operate on unpaired images. DCLGAN and SimDCL methods are derived by taking inspiration from the CycleGAN method. In these methods, cost functions and network structures vary. This study thoroughly examines the methods, and their similarities and differences are observed. After semantic segmentation is performed, the results are presented using both visual and measurement metrics. Measurement metrics such as FID, KID, PSNR, FSIM, SSIM, and MAE are used. Experimental studies show that SSimDCL and SimDCL methods outperform other methods in iSAID image semantic segmentation. CycleGAN method, on the other hand, is observed to be less successful compared to other methods. The aim of this study is to perform automatic semantic segmentation in aerial images.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"22 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Up-to-Date GAN Methods for Aerial Images\",\"authors\":\"Sara Altun Güven, Buket Toptaş\",\"doi\":\"10.24012/dumf.1386384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection and segmentation in aerial images is currently a vibrant and significant field of research. The iSAID dataset has been created for object detection in images captured by aerial vehicles. In this study, image semantic segmentation was performed on the iSAID dataset using Generative Adversarial Networks (GANs). The compared GAN methods are CycleGAN, DCLGAN, SimDCL, and SSimDCL. All methods operate on unpaired images. DCLGAN and SimDCL methods are derived by taking inspiration from the CycleGAN method. In these methods, cost functions and network structures vary. This study thoroughly examines the methods, and their similarities and differences are observed. After semantic segmentation is performed, the results are presented using both visual and measurement metrics. Measurement metrics such as FID, KID, PSNR, FSIM, SSIM, and MAE are used. Experimental studies show that SSimDCL and SimDCL methods outperform other methods in iSAID image semantic segmentation. CycleGAN method, on the other hand, is observed to be less successful compared to other methods. The aim of this study is to perform automatic semantic segmentation in aerial images.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"22 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1386384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1386384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

航空图像中的物体检测和分割是目前一个充满活力的重要研究领域。iSAID 数据集是为在航空飞行器拍摄的图像中进行物体检测而创建的。本研究使用生成对抗网络(GAN)对 iSAID 数据集进行图像语义分割。比较的 GAN 方法有 CycleGAN、DCLGAN、SimDCL 和 SSimDCL。所有方法都在无配对图像上运行。DCLGAN 和 SimDCL 方法是从 CycleGAN 方法中获得的灵感。在这些方法中,成本函数和网络结构各不相同。本研究对这些方法进行了深入研究,并观察了它们之间的异同。在进行语义分割后,使用视觉和测量指标来展示结果。测量指标包括 FID、KID、PSNR、FSIM、SSIM 和 MAE。实验研究表明,在 iSAID 图像语义分割方面,SSimDCL 和 SimDCL 方法优于其他方法。另一方面,与其他方法相比,CycleGAN 方法的成功率较低。本研究旨在对航空图像进行自动语义分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Up-to-Date GAN Methods for Aerial Images
Object detection and segmentation in aerial images is currently a vibrant and significant field of research. The iSAID dataset has been created for object detection in images captured by aerial vehicles. In this study, image semantic segmentation was performed on the iSAID dataset using Generative Adversarial Networks (GANs). The compared GAN methods are CycleGAN, DCLGAN, SimDCL, and SSimDCL. All methods operate on unpaired images. DCLGAN and SimDCL methods are derived by taking inspiration from the CycleGAN method. In these methods, cost functions and network structures vary. This study thoroughly examines the methods, and their similarities and differences are observed. After semantic segmentation is performed, the results are presented using both visual and measurement metrics. Measurement metrics such as FID, KID, PSNR, FSIM, SSIM, and MAE are used. Experimental studies show that SSimDCL and SimDCL methods outperform other methods in iSAID image semantic segmentation. CycleGAN method, on the other hand, is observed to be less successful compared to other methods. The aim of this study is to perform automatic semantic segmentation in aerial images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1