通过图像处理估测性别和年龄

Mesut Uysal, Mehmet Fatih Demiral
{"title":"通过图像处理估测性别和年龄","authors":"Mesut Uysal, Mehmet Fatih Demiral","doi":"10.24012/dumf.1380485","DOIUrl":null,"url":null,"abstract":"Today, with the increasing interest in technology, very useful studies are carried out in the field of image processing. Image technologies are also used in many fields such as security, defense, medicine, and industry. In this study, age, gender, and ethnicity were found in the image by using different deep learning techniques and by building our own model in CNN. The 23705 images taken from the csv file named Face Data taken from Kaggle were categorized as different gender, race, and age within the application and the accuracy and losses of the results were transferred with graphs. In addition, by creating an interface with the help of the Python flask library, the results of the snapshot taken from the camera (age, gender, and race) can also be found. Out of the 23705 images, approximately 12000 male and 11000 female profiles were obtained. These profiles were classified according to 5 different genetics specified in the dataset. The genetics in the application (0 represented White, 1 represented Black, 2 represented Asian, 3 represented Indian, 4 represented Others.) The most difficult part of this study is that the picture changes depending on many factors such as posture, pose angle, brightness, and resolution at the time of shooting..","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"84 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gender and Age Estimation By Image Processing\",\"authors\":\"Mesut Uysal, Mehmet Fatih Demiral\",\"doi\":\"10.24012/dumf.1380485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, with the increasing interest in technology, very useful studies are carried out in the field of image processing. Image technologies are also used in many fields such as security, defense, medicine, and industry. In this study, age, gender, and ethnicity were found in the image by using different deep learning techniques and by building our own model in CNN. The 23705 images taken from the csv file named Face Data taken from Kaggle were categorized as different gender, race, and age within the application and the accuracy and losses of the results were transferred with graphs. In addition, by creating an interface with the help of the Python flask library, the results of the snapshot taken from the camera (age, gender, and race) can also be found. Out of the 23705 images, approximately 12000 male and 11000 female profiles were obtained. These profiles were classified according to 5 different genetics specified in the dataset. The genetics in the application (0 represented White, 1 represented Black, 2 represented Asian, 3 represented Indian, 4 represented Others.) The most difficult part of this study is that the picture changes depending on many factors such as posture, pose angle, brightness, and resolution at the time of shooting..\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"84 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1380485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1380485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,随着人们对技术的兴趣与日俱增,在图像处理领域开展了非常有用的研究。图像技术也被广泛应用于安全、国防、医疗和工业等领域。在这项研究中,通过使用不同的深度学习技术和在 CNN 中建立我们自己的模型,我们发现了图像中的年龄、性别和种族。从 Kaggle 获取的名为 "人脸数据 "的 csv 文件中提取的 23705 张图像被归类为不同的性别、种族和年龄,结果的准确性和损失以图表的形式传输。此外,在 Python flask 库的帮助下创建了一个界面,通过该界面还可以找到摄像头拍摄的快照结果(年龄、性别和种族)。在 23705 张图像中,获得了约 12000 个男性和 11000 个女性的特征。我们根据数据集中指定的 5 种不同基因对这些特征进行了分类。应用中的基因(0 代表白人,1 代表黑人,2 代表亚洲人,3 代表印度人,4 代表其他。)这项研究最困难的地方在于,图片会因拍摄时的姿势、姿势角度、亮度和分辨率等多种因素而发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gender and Age Estimation By Image Processing
Today, with the increasing interest in technology, very useful studies are carried out in the field of image processing. Image technologies are also used in many fields such as security, defense, medicine, and industry. In this study, age, gender, and ethnicity were found in the image by using different deep learning techniques and by building our own model in CNN. The 23705 images taken from the csv file named Face Data taken from Kaggle were categorized as different gender, race, and age within the application and the accuracy and losses of the results were transferred with graphs. In addition, by creating an interface with the help of the Python flask library, the results of the snapshot taken from the camera (age, gender, and race) can also be found. Out of the 23705 images, approximately 12000 male and 11000 female profiles were obtained. These profiles were classified according to 5 different genetics specified in the dataset. The genetics in the application (0 represented White, 1 represented Black, 2 represented Asian, 3 represented Indian, 4 represented Others.) The most difficult part of this study is that the picture changes depending on many factors such as posture, pose angle, brightness, and resolution at the time of shooting..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1