俄罗斯欧洲泰加地带人工造林的现代实践

A. Ilintsev, Aleksandr P. Bogdanov, Evgeniy M. Romanov, Vasiliy V. Voronin
{"title":"俄罗斯欧洲泰加地带人工造林的现代实践","authors":"A. Ilintsev, Aleksandr P. Bogdanov, Evgeniy M. Romanov, Vasiliy V. Voronin","doi":"10.37482/0536-1036-2024-1-52-64","DOIUrl":null,"url":null,"abstract":"The article presents an analysis of technologies and techniques for creating forest plantations used in the Arkhangelsk and Kirov Regions, as well as the Komi Republic, based on the materials of reforestation projects for 2020. The territories under consideration belong to 6 forest areas: the Northern taiga, the Dvina-Vychegda taiga, the Southern taiga, the coniferous- broad-leafed (mixed) forests, the Western Ural taiga and the area of tundra forests and sparse taiga. The database created on the basis of the data from reforestation projects includes 13 indicators: categories of reforestation areas, forest vegetation conditions (terrain, soil type, soil moisture, group of forest types, degree of turfing), as well as tillage methods, mechanisms and aggregates used for tillage and planting seedlings and saplings and planting stock type. It has been established that in the studied regions, reforestation is more often carried out in fresh (1–2-year-old) felling areas in place of spruce plantations of blueberry forests, with podzolic drained and poorly drained soils. When cultivating soil for forest plantations, excavators are widely used (44 %), replacing traditional tractors with ploughs (usually PL-1). In most areas, furrow tillage is prevalent (52 %), but strips, mounds and patch scarification are also common (40 %). Containerized spruce and pine planting stocks have become more widely used (more than 50 % of the area), though seedlings are extremely rare (7 % in the Kirov Region). The data obtained allow us to asses the real picture of the use of reforestation technologies in the taiga zone on the example of three subjects of the Russian Federation, which will help the subjects of the Russian Federation in making management decisions for exercising their powers in the reforestation field.","PeriodicalId":508281,"journal":{"name":"Lesnoy Zhurnal (Forestry Journal)","volume":"118 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern Practice of Artificial Reforestation in the Taiga Zone of the European Part of Russia\",\"authors\":\"A. Ilintsev, Aleksandr P. Bogdanov, Evgeniy M. Romanov, Vasiliy V. Voronin\",\"doi\":\"10.37482/0536-1036-2024-1-52-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents an analysis of technologies and techniques for creating forest plantations used in the Arkhangelsk and Kirov Regions, as well as the Komi Republic, based on the materials of reforestation projects for 2020. The territories under consideration belong to 6 forest areas: the Northern taiga, the Dvina-Vychegda taiga, the Southern taiga, the coniferous- broad-leafed (mixed) forests, the Western Ural taiga and the area of tundra forests and sparse taiga. The database created on the basis of the data from reforestation projects includes 13 indicators: categories of reforestation areas, forest vegetation conditions (terrain, soil type, soil moisture, group of forest types, degree of turfing), as well as tillage methods, mechanisms and aggregates used for tillage and planting seedlings and saplings and planting stock type. It has been established that in the studied regions, reforestation is more often carried out in fresh (1–2-year-old) felling areas in place of spruce plantations of blueberry forests, with podzolic drained and poorly drained soils. When cultivating soil for forest plantations, excavators are widely used (44 %), replacing traditional tractors with ploughs (usually PL-1). In most areas, furrow tillage is prevalent (52 %), but strips, mounds and patch scarification are also common (40 %). Containerized spruce and pine planting stocks have become more widely used (more than 50 % of the area), though seedlings are extremely rare (7 % in the Kirov Region). The data obtained allow us to asses the real picture of the use of reforestation technologies in the taiga zone on the example of three subjects of the Russian Federation, which will help the subjects of the Russian Federation in making management decisions for exercising their powers in the reforestation field.\",\"PeriodicalId\":508281,\"journal\":{\"name\":\"Lesnoy Zhurnal (Forestry Journal)\",\"volume\":\"118 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lesnoy Zhurnal (Forestry Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37482/0536-1036-2024-1-52-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lesnoy Zhurnal (Forestry Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37482/0536-1036-2024-1-52-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章根据 2020 年重新造林项目的材料,对阿尔汉格尔斯克州、基洛夫州和科米共和国使用的造林技术和工艺进行了分析。研究区域属于 6 个林区:北泰加林区、德维纳-维切格达泰加林区、南泰加林区、针叶-阔叶(混交)林区、西乌拉尔泰加林区以及冻原森林和稀疏泰加林区。根据植树造林项目数据建立的数据库包括 13 项指标:植树造林区域类别、森林植被条件(地形、土壤类型、土壤湿度、森林类型组、草皮化程度)、耕作方法、耕作和种植树苗和树苗所用的机制和集料以及种植类型。研究结果表明,在所研究的地区,植树造林更多地是在新砍伐(1-2 年)的区域进行,以取代蓝莓林云杉种植区,土壤为荚状排水土和排水不良土。在林场土壤耕作时,挖掘机被广泛使用(44%),取代了使用犁(通常是 PL-1)的传统拖拉机。大多数地区普遍采用沟耕法(52%),但条耕、丘耕和片耕也很常见(40%)。容器栽培云杉和松树的应用越来越广泛(超过 50% 的地区),但树苗却极为罕见(基洛夫地区为 7%)。根据所获得的数据,我们可以以俄罗斯联邦的三个主体为例,对泰加区重新造林技术的实际使用情况进行评估,这将有助于俄罗斯联邦主体在重新造林领域行使权力时做出管理决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modern Practice of Artificial Reforestation in the Taiga Zone of the European Part of Russia
The article presents an analysis of technologies and techniques for creating forest plantations used in the Arkhangelsk and Kirov Regions, as well as the Komi Republic, based on the materials of reforestation projects for 2020. The territories under consideration belong to 6 forest areas: the Northern taiga, the Dvina-Vychegda taiga, the Southern taiga, the coniferous- broad-leafed (mixed) forests, the Western Ural taiga and the area of tundra forests and sparse taiga. The database created on the basis of the data from reforestation projects includes 13 indicators: categories of reforestation areas, forest vegetation conditions (terrain, soil type, soil moisture, group of forest types, degree of turfing), as well as tillage methods, mechanisms and aggregates used for tillage and planting seedlings and saplings and planting stock type. It has been established that in the studied regions, reforestation is more often carried out in fresh (1–2-year-old) felling areas in place of spruce plantations of blueberry forests, with podzolic drained and poorly drained soils. When cultivating soil for forest plantations, excavators are widely used (44 %), replacing traditional tractors with ploughs (usually PL-1). In most areas, furrow tillage is prevalent (52 %), but strips, mounds and patch scarification are also common (40 %). Containerized spruce and pine planting stocks have become more widely used (more than 50 % of the area), though seedlings are extremely rare (7 % in the Kirov Region). The data obtained allow us to asses the real picture of the use of reforestation technologies in the taiga zone on the example of three subjects of the Russian Federation, which will help the subjects of the Russian Federation in making management decisions for exercising their powers in the reforestation field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Archives of Clones of Scots Pine Plus Trees in the Republic of Karelia The Genetic Structure Features of the Pinus sylvestris L. Population in the Steppe Zone of European Russia Optimization of the Design Parameters of the Regenerative Rod of a Logging Road Train Formation of Tree Morphology in Cultivated Pine Stands Identification of Damage to Coniferous Stands Based on Comprehensive Analysis of the Results of Remote Sensing of the Earth and Ground Surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1