在 BALB/c 小鼠模型中,一种独特的代谢组学模式揭示了肠道微环境因素介导的食物过敏症

IF 5.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Science and Human Wellness Pub Date : 2024-11-01 DOI:10.26599/FSHW.2023.9250049
Qiang Xie , Chenglong Liu , Wenhui Fu , Chen Chen , Dan Luo , Shimin Gu , Wentong Xue
{"title":"在 BALB/c 小鼠模型中,一种独特的代谢组学模式揭示了肠道微环境因素介导的食物过敏症","authors":"Qiang Xie ,&nbsp;Chenglong Liu ,&nbsp;Wenhui Fu ,&nbsp;Chen Chen ,&nbsp;Dan Luo ,&nbsp;Shimin Gu ,&nbsp;Wentong Xue","doi":"10.26599/FSHW.2023.9250049","DOIUrl":null,"url":null,"abstract":"<div><div>Intestinal immune homeostasis plays a critical role in the pathogenesis of food allergy. However, the association between intestinal microenvironment factors and food allergy severity is not well studied. In this study, we established a gluten allergy (GA) BALB/c mouse model and revealed the intestinal luminal factor-mediated alterations in phenotypes and endotypes of GA, combined with untargeted metabolomic profiling of the colonic contents. Our results showed that gluten sensitization induced severe allergic responses in BALB/c mice, characterized by exacerbated clinical allergic and diarrheal symptoms, increased histamine, elevated gluten-specific immunoglobulin (Ig)E and IgG2a levels, and increased mast cell degranulation. In response to GA, T-cell balance was disrupted, with aberrant production of interleukin (IL)-4, interferon (IFN)-γ, IL-10, and IL-2 in the spleen. GA led to a disrupted intestinal microenvironment homeostasis, including increased pH and water content, impaired intestinal antioxidant capacity and epithelial barrier function, decreased short-chain fatty acid production, and microbial dysbiosis, which was strongly correlated with GA severity. By metabolomic profiling, we found 29 differential expressed metabolites (DEMs) associated with GA, with 9 down-regulated and 20 up-regulated. A total of 11 out of all DEMs were classified into dipeptides, and 10 of them were up-regulated in the GA mice. Pathway enrichment analysis showed that most of the DEMs were enriched into the bile secretion metabolic route.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 6","pages":"Pages 3680-3696"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A distinct metabolomic pattern revealed intestinal microenvironment factor-mediated food allergy in a BALB/c mouse model\",\"authors\":\"Qiang Xie ,&nbsp;Chenglong Liu ,&nbsp;Wenhui Fu ,&nbsp;Chen Chen ,&nbsp;Dan Luo ,&nbsp;Shimin Gu ,&nbsp;Wentong Xue\",\"doi\":\"10.26599/FSHW.2023.9250049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intestinal immune homeostasis plays a critical role in the pathogenesis of food allergy. However, the association between intestinal microenvironment factors and food allergy severity is not well studied. In this study, we established a gluten allergy (GA) BALB/c mouse model and revealed the intestinal luminal factor-mediated alterations in phenotypes and endotypes of GA, combined with untargeted metabolomic profiling of the colonic contents. Our results showed that gluten sensitization induced severe allergic responses in BALB/c mice, characterized by exacerbated clinical allergic and diarrheal symptoms, increased histamine, elevated gluten-specific immunoglobulin (Ig)E and IgG2a levels, and increased mast cell degranulation. In response to GA, T-cell balance was disrupted, with aberrant production of interleukin (IL)-4, interferon (IFN)-γ, IL-10, and IL-2 in the spleen. GA led to a disrupted intestinal microenvironment homeostasis, including increased pH and water content, impaired intestinal antioxidant capacity and epithelial barrier function, decreased short-chain fatty acid production, and microbial dysbiosis, which was strongly correlated with GA severity. By metabolomic profiling, we found 29 differential expressed metabolites (DEMs) associated with GA, with 9 down-regulated and 20 up-regulated. A total of 11 out of all DEMs were classified into dipeptides, and 10 of them were up-regulated in the GA mice. Pathway enrichment analysis showed that most of the DEMs were enriched into the bile secretion metabolic route.</div></div>\",\"PeriodicalId\":12406,\"journal\":{\"name\":\"Food Science and Human Wellness\",\"volume\":\"13 6\",\"pages\":\"Pages 3680-3696\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Human Wellness\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213453024002787\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024002787","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A distinct metabolomic pattern revealed intestinal microenvironment factor-mediated food allergy in a BALB/c mouse model
Intestinal immune homeostasis plays a critical role in the pathogenesis of food allergy. However, the association between intestinal microenvironment factors and food allergy severity is not well studied. In this study, we established a gluten allergy (GA) BALB/c mouse model and revealed the intestinal luminal factor-mediated alterations in phenotypes and endotypes of GA, combined with untargeted metabolomic profiling of the colonic contents. Our results showed that gluten sensitization induced severe allergic responses in BALB/c mice, characterized by exacerbated clinical allergic and diarrheal symptoms, increased histamine, elevated gluten-specific immunoglobulin (Ig)E and IgG2a levels, and increased mast cell degranulation. In response to GA, T-cell balance was disrupted, with aberrant production of interleukin (IL)-4, interferon (IFN)-γ, IL-10, and IL-2 in the spleen. GA led to a disrupted intestinal microenvironment homeostasis, including increased pH and water content, impaired intestinal antioxidant capacity and epithelial barrier function, decreased short-chain fatty acid production, and microbial dysbiosis, which was strongly correlated with GA severity. By metabolomic profiling, we found 29 differential expressed metabolites (DEMs) associated with GA, with 9 down-regulated and 20 up-regulated. A total of 11 out of all DEMs were classified into dipeptides, and 10 of them were up-regulated in the GA mice. Pathway enrichment analysis showed that most of the DEMs were enriched into the bile secretion metabolic route.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Science and Human Wellness
Food Science and Human Wellness Agricultural and Biological Sciences-Food Science
CiteScore
8.30
自引率
5.70%
发文量
80
审稿时长
28 days
期刊介绍: Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.
期刊最新文献
Silver carp muscle hydrolysate ameliorated atherosclerosis and liver injury in apoE-/- mice: the modulator effects on enterohepatic cholesterol metabolism Anti-fatigue activity and mechanism of crocetin loaded nanoliposome in acute exercise-treated mice Association of moderate beer consumption with the gut microbiota The impact of short-term changes in sleeping and eating patterns on glucometabolic health and gut microbiota in healthy young adults: a proof-of-concept controlled feeding study Evolution of free amino acids, biogenic amines and volatile compounds in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus simulans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1