Qian Wang , Xiaoqian Lu , Wen Hu , Cong Zhang , Kexin Liu , Kai Tong , Kaiqi Chen , Hui Wang
{"title":"产前接触咖啡因的雌性后代大鼠对非酒精性脂肪疾病易感性增加的肠道-肝轴机制","authors":"Qian Wang , Xiaoqian Lu , Wen Hu , Cong Zhang , Kexin Liu , Kai Tong , Kaiqi Chen , Hui Wang","doi":"10.26599/FSHW.2023.9250035","DOIUrl":null,"url":null,"abstract":"<div><div>Caffeine intake during pregnancy is common, while its effect on gut microbiota composition of offspring and the relationship with susceptibility to adult diseases remains unclear. This study aimed to confirm the effects of prenatal caffeine exposure (PCE) on the gut microbiota composition and its metabolites in female offspring rats, and to further elucidate its underlying mechanism and intervention targets in adult non-alcoholic fatty disease (NAFLD). The results showed that the gut microbiota of PCE female offspring at multiple time points from infancy to adolescence were significantly changed with depletion of butyric acid-producing bacteria, leading to a decrease in butyric acid in adulthood. It was also found that PCE female offspring rats were sensitive to NAFLD induced by a postnatal high-fat diet (HFD), which is mainly related to the enhancement of hepatic triglyceride synthesis function. Through mechanism exploration, we found that HFD further reduced the fecal and serum butyric acid levels in the PCE female offspring, which was significantly negatively correlated with hepatic <em>SREBP-1c/FASN</em> mRNA expression and triglyceride level. <em>In vivo</em> and <em>in vitro</em> experiments confirmed that sodium butyrate (NaB) supplementation could reduce hepatic lipid accumulation through MCT1/GPR109A-AMPK, thereby effectively decreasing the susceptibility to NAFLD in the PCE female offspring rats.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 6","pages":"Pages 3522-3535"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The gut-liver axis mechanismf of increased susceptibility to non-alcoholic fatty disease in female offspring rats with prenatal caffeine exposure\",\"authors\":\"Qian Wang , Xiaoqian Lu , Wen Hu , Cong Zhang , Kexin Liu , Kai Tong , Kaiqi Chen , Hui Wang\",\"doi\":\"10.26599/FSHW.2023.9250035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Caffeine intake during pregnancy is common, while its effect on gut microbiota composition of offspring and the relationship with susceptibility to adult diseases remains unclear. This study aimed to confirm the effects of prenatal caffeine exposure (PCE) on the gut microbiota composition and its metabolites in female offspring rats, and to further elucidate its underlying mechanism and intervention targets in adult non-alcoholic fatty disease (NAFLD). The results showed that the gut microbiota of PCE female offspring at multiple time points from infancy to adolescence were significantly changed with depletion of butyric acid-producing bacteria, leading to a decrease in butyric acid in adulthood. It was also found that PCE female offspring rats were sensitive to NAFLD induced by a postnatal high-fat diet (HFD), which is mainly related to the enhancement of hepatic triglyceride synthesis function. Through mechanism exploration, we found that HFD further reduced the fecal and serum butyric acid levels in the PCE female offspring, which was significantly negatively correlated with hepatic <em>SREBP-1c/FASN</em> mRNA expression and triglyceride level. <em>In vivo</em> and <em>in vitro</em> experiments confirmed that sodium butyrate (NaB) supplementation could reduce hepatic lipid accumulation through MCT1/GPR109A-AMPK, thereby effectively decreasing the susceptibility to NAFLD in the PCE female offspring rats.</div></div>\",\"PeriodicalId\":12406,\"journal\":{\"name\":\"Food Science and Human Wellness\",\"volume\":\"13 6\",\"pages\":\"Pages 3522-3535\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Human Wellness\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213453024002532\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024002532","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The gut-liver axis mechanismf of increased susceptibility to non-alcoholic fatty disease in female offspring rats with prenatal caffeine exposure
Caffeine intake during pregnancy is common, while its effect on gut microbiota composition of offspring and the relationship with susceptibility to adult diseases remains unclear. This study aimed to confirm the effects of prenatal caffeine exposure (PCE) on the gut microbiota composition and its metabolites in female offspring rats, and to further elucidate its underlying mechanism and intervention targets in adult non-alcoholic fatty disease (NAFLD). The results showed that the gut microbiota of PCE female offspring at multiple time points from infancy to adolescence were significantly changed with depletion of butyric acid-producing bacteria, leading to a decrease in butyric acid in adulthood. It was also found that PCE female offspring rats were sensitive to NAFLD induced by a postnatal high-fat diet (HFD), which is mainly related to the enhancement of hepatic triglyceride synthesis function. Through mechanism exploration, we found that HFD further reduced the fecal and serum butyric acid levels in the PCE female offspring, which was significantly negatively correlated with hepatic SREBP-1c/FASN mRNA expression and triglyceride level. In vivo and in vitro experiments confirmed that sodium butyrate (NaB) supplementation could reduce hepatic lipid accumulation through MCT1/GPR109A-AMPK, thereby effectively decreasing the susceptibility to NAFLD in the PCE female offspring rats.
期刊介绍:
Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.