利用机器学习检测恶意 URL

Prenalee Nanaware
{"title":"利用机器学习检测恶意 URL","authors":"Prenalee Nanaware","doi":"10.59890/ijist.v2i1.1289","DOIUrl":null,"url":null,"abstract":"\n\n\n\n      One of the most prevalent and least protected security risks in existence today is fraudulent websites and URLs.We offer a method that both uses machine learning characteristics to identify phishing URLs and employs text processing techniques to evaluate text and identify incorrect remarks that are suggestive of phishing assaults.\n\n\n\n","PeriodicalId":503863,"journal":{"name":"International Journal of Integrated Science and Technology","volume":"57 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malicious URL Detection using Machine Learning\",\"authors\":\"Prenalee Nanaware\",\"doi\":\"10.59890/ijist.v2i1.1289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\n\\n      One of the most prevalent and least protected security risks in existence today is fraudulent websites and URLs.We offer a method that both uses machine learning characteristics to identify phishing URLs and employs text processing techniques to evaluate text and identify incorrect remarks that are suggestive of phishing assaults.\\n\\n\\n\\n\",\"PeriodicalId\":503863,\"journal\":{\"name\":\"International Journal of Integrated Science and Technology\",\"volume\":\"57 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59890/ijist.v2i1.1289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59890/ijist.v2i1.1289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供的方法既能利用机器学习特征识别网络钓鱼 URL,又能利用文本处理技术评估文本并识别暗示网络钓鱼攻击的错误备注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Malicious URL Detection using Machine Learning
      One of the most prevalent and least protected security risks in existence today is fraudulent websites and URLs.We offer a method that both uses machine learning characteristics to identify phishing URLs and employs text processing techniques to evaluate text and identify incorrect remarks that are suggestive of phishing assaults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconciling the Issues And Concerns of the Place of Rhetoric in Communication for Development Practice: an Essay Industrial Safety Helmet Detection: Innovative CNN-Based Classification Approach Classification of Drinking Water Potability With Artificial Neural Network Algorithm Valuation of Svm Kernel Performance in Organic and Non-Organic Waste Classification Bioactivities of Purple Shamrock (Oxalis Triangularis) Crude Extract and Evaluation of Shamrock Topical Antibacterial Gel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1